Identifying quenched jets with machine learning

Yilun Wu (Vanderbilt University)

Motivation

- In heavy-ion collisions, jets are quenched to different extents.
 How can we know the energy lost by each jet?
- ***** How to build a neural network that can learn from the jet substructure?
- How to build a neural network that is robust to realistic experimental conditions?
 - Underlying event background
 - Detector effects

Methods

1. Thermal Background Embedding

2. Jet substructures and Feature Engineering

In heavy-ion collisions, jet substructures get modified compared to pp collisions.

4. Supervised Learning—binary classification

Binary class labeling: Jewel(PbPb) jets: 1; Jewel-vac(pp) jets: 0

How different are the two classes? Can we identify the quenched jets?

Results

- Define two event classes based on quenching level using LSTM outputs
- Jet-substructure distributions for two quenching level classes

2. Toy models for detector effects

- The detector effects increase the FPR from 0.08
- More detector effects, like particle momentum/energy smearing, are being studied using the DELPHES fast simulation

3. Jet Fragmentation Function and Jet Shape Modifications

Left: The JFF ratios from five quenching classes of Jewel jets divided by the Jewel-vac jets.

- ullet **0-20%** Jewel jets: large ξ is enhanced with a depletion of intermediate ξ
- 20-60% Jewel jets: small ξ is enhanced (a bias towards jets that are less fragmented than the average quenched jets)
- ullet 60-100% Jewel jets: behave like biased pp jets (with small LSTM values) in the small ξ region

<u>Right:</u> The JS ratios from five quenching classes of Jewel jets divided by the Jewel-vac jets. They also show different jet quenching modes corresponding to the JFF ratio results.

Summary and Outlook

- ❖ The neural network is able to identify the quenching amount jet-by-jet in the presence of a large uncorrelated underlying event in heavy ion collisions.
- Simulations indicate that the method is still valid after including detector effects.

Reference: J. High Energ. Phys. 2023, 140 (2023) Supported in part by DOE grant: DE-FG05-92ER40712