Quark Matter 2023

Contribution ID: 108

Type: Poster

Empirical Characteristics of Light and Heavy Flavor Parton Energy Loss Dynamics at the LHC and RHIC

Tuesday 5 September 2023 17:30 (2h 10m)

Nuclear modification factors (R_{AA}) of leading particles provide valuable information about the flavor dependent magnitude and characteristics of parton energy loss in A + A collisions. Experimental measurements of R_{AA} exhibit a distinct different dependence on transverse momentum (p_T) at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). Previous analyses of RHIC data treated the difference in the p_T spectrum between p + p and A + A collisions as a leading parton p_T loss and empirically concluded that the flat p_T dependence of R_{AA} corresponds to a constant fractional $p_T \log (\Delta p_T/p_T)$ [1]. This feature of Δp_T proportional to p_T can be understood via elastic collisions in classical dynamics. We analyze LHC measurements of the strong p_T dependence of R_{AA} for light and heavy flavor leading particles. Our analyses indicate that LHC data for a variety of leading particle species are consistent with Δp_T proportional to $\sqrt{p_T}$, in contrast to proportional to p_T at RHIC. In addition, Charm hadrons exhibit differing behavior compared to the other species studied, revealing possible unique heavy flavor dynamics. These distinct features are consistent with the scenario of increased contributions from radiative energy loss at LHC energies compared with stronger collisional energy loss dominance at RHIC energies. Moreover, linear trends between fractional energy loss and initial parton density at varying p_T magnitudes indicate that the amount of parton energy loss does not depend strongly on the traversing geometrical path length of the parton during collision evolutions, which is in agreement with previous empirical findings at RHIC despite significant different initial parton densities formed at LHC and RHIC. We will also discuss further implications of the observed proportionality in LHC data and differences in fractional energy loss at varying p_T scales. [1] Wang, G. and Huang, H. Phys. Lett. B 672, 30 (2009).

Category

Experiment

Collaboration (if applicable)

Primary author: MARSHALL, THOMAS **Presenter:** MARSHALL, THOMAS

Session Classification: Poster Session

Track Classification: Heavy Flavor