An efficient numerical solver for relativistic hydrodynamics with an implicit Runge-Kutta method

Masakiyo Kitazawa (YITP, Kyoto) with Nathan Touroux, Koichi Murase, Marlene Nahrgang, Marcus Bluhm

Computational relativistic hydrodynamics

Core of dynamical modeling of HIC

Higher efficiency/stability/ accuracy is highly desirable.

Our strategy: Use implicit Runge-Kutta for time integrator

Implicit RK

stable (A-stability)

non-linear equations

ex)
$$\dot{x} = f(x)$$

Implicit Euler

$$x(t + \Delta t) = x(t) + \Delta t f(x(t + \Delta t))$$

Euler (explicit)

 $x(t + \Delta t) = x(t) + \Delta t f(x(t))$

To solve non-linear eqs.

Fixed-point method

- initial guess: previous result

Local optimization

- check convergence locally

RK schemes

Implicit: 1st Gauss-Legendre Explicit: Heun's method

Space scheme: KT with MUSCL Butcher tables:

GL1 Heun

Results

Riemann Problem (1+1d)

Gubser Flow (2+1d)

HIC (T_RENTo, 2+1d)

Implicit solver is more

efficient than explicits!

Conclusion

- New method to solve relativistic hydrodynamics using an implicit RK time integrator.
- Fixed-point method with local optimization to solve non-linear RK equaitons.
- Our solver is more efficient than conventional methods based on explicit RK methods.