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1. Introduction
• Polyakov-loop improved NJL (PNJL) model is a common
tool for a phenomenological description of the chiral and de-
confinement phase transitions, and bound states formation
and dissociation in hot and dense baryonic medium

• The contribution of mesonic correlations to the pressure is
given by the generalized Beth-Uhlenbeck formula following
from the corresponding Luttinger-Ward functional [1, 2]

• The Lorentz-invariant approximation is commonly used for
treating mesonic excitations, with leaving out of considera-
tion the spacelike off-shell mesonic excitations, i.e. Landau
damping

In this contribution we demonstrate the importance of including
such excitations into calculation of thermodynamic quantities
within the simplest “mean-field + fluctuations” formulation of
the PNJL model [3].

2. PNJL model at mean-field (MF) level

We use the PNJL model with Nf = 2 quark flavors and Nc = 3 colors at the baryon chemical potential µ and temperature T described by

LPNJL = q̄(i /D −m0)q +Gs

[
(q̄q)2 + (q̄iγ5τ⃗ q)2

]
, Dµ = ∂µ − iδ

µ
0 (A

0 + µ), m0 = 5.5MeV, Gs = 5.04GeV−2 (1)

The gluon contribution to the thermodynamics is modeled by the effective potential U(Φ, Φ̄, T ) in terms of the traced Polyakov loop fitted to describe the
lattice data on pure SU(3) Yang-Mill thermodynamics. The total grand canonical thermodynamic potential of the model reads

Ω(T ; Φ, Φ̄,m) = U(Φ, Φ̄, T ) + (m−m0)
2

4Gs
− 2Nf

{ ∫
|p⃗|<Λ

d3p

(2π)3
Ncεp

+T

∫
d3p

(2π)3
[Trc ln[1 + Ly] + Trc ln[1 + L†y]]

}
, εp =

√
m2 + p2.

The MF values of Φ, Φ̄,m follow from ∂Ω
∂Φ = ∂Ω

∂Φ̄
= ∂Ω

∂m = 0
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• T <∼ T
χ
c : pions exist as stable

bound states

• T >∼ T
χ
c : mπ > 2m(T )

finite width of π,

Mott dissociation

3. Beyond-mean-field mesonic fluctuations

The π- and σ-meson 1PI polarization operators read

ΠM (ω, q⃗) = T
∑∫
P

G(ωn, p⃗)ΓMG(ωn − εk, p⃗− q⃗)ΓM , M = {π, σ}, Γπ = iγ5, Γσ = 1. (2)

The RPA-resummed propagator of a quasi-meson M is then determined as

DM (ω, q) = − 2Gs

1 + 2GsΠM (ω, q)
. (3)

The mass mM of a quasi-meson M is defined either as a solution of 1 + 2GsReΠM (ω = mM , q = 0) = 0 or
as the position of the maximum of the spectral function ρM (ω, q) = −2 ImDM (ω, q) at zero momentum in the
case of finite meson width.
The meson contribution to the pressure is given by generalized Beth-Uhlenbeck formula [1, 2]

PM = dM
∑

k=QP,LD

∫
|q⃗|<Λk

d3q

(2π)3
wk
M (q, T ), w

QP
M ≡

∞∫
q

dω

π

δM (ω, q, T )

eω/T − 1
, wLD

M ≡
q∫

0

dω

π

δM (ω, q, T )

eω/T − 1
,

where δM (ω, q, T ) = − arctan ImDM
ReDM

is the quark-antiquark scattering phase shift in channel M = π, σ

ΛQP → ∞, ΛLD = (1− 2)Λ encountered in the literature [4, 5, 6]

5. Pionic phase shifts and momentum distributions
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4. Pion dynamical structure factor Sπ(ω, q) = 1
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Low-frequency spacelike excitations are enhanced by the thermal distribution despite their relatively small

contribution to the spectral function
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6. Pion pressure momentum integrand

Comparing the pion momentum “distributions” from QP and LD region with free pion case
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7. Thermodynamic quantities
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LD contribution:

• Growing similarly to MF pressure as the
quark mass m(T ) decreases

• Peaks around T
χ
c with magnitude sensi-

tive to the 3-momentum cutoff

Trace anomaly

• More sensitive to the LD contribution

• Peak position shifts to lower T

8. Estimate of the effect on ⟨q̄q⟩

“Perturbative” estimate using Hellmann-Feynman
theorem:

⟨q̄q⟩M = −∂PM (T ;m)
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• QP contribution does not affect T
χ
c

• LD contribution shifts T
χ
c to lower values

9. Conclusion
• Presence of the Landau cut in the meson propagators leads
to a significant enhancement and threshold dependence of
the total pressure

• This contribution will arise in any model where the Hartree
propagators for quarks are used, e.g. NLO 1/Nc expansion

• A self-consistent calculation of meson and quark spectral
properties is necessary
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