

Study of Baryon Number Transport via Ω -hadron Correlations

Xiatong Wu^[1], Weijie Dong^[2], Siyuan Ping^[2], Xiaozhou Yu^[2], Gang Wang^[1], Huan Zhong Huang^[1,2]
[1] University of California, Los Angeles, CA; [2] Fudan University, Shanghai

Abstract

In heavy-ion collisions at lower RHIC BES energies, the $\bar{\Omega}^+$ over Ω^- ratios are significantly below one, suggesting that Ω^- carries net baryon number originated from the colliding nuclei even though s and \bar{s} quarks must be produced in pairs. To investigate the dynamics of possible Ω production scenarios, we propose to measure correlations between Ω and strange hadrons such as K, Λ and Ξ . We will present a novel correlation function based on combinatorial background subtraction that is sensitive to the number of strange hadrons associated with Ω production. Using AMPT simulated events at $\sqrt{s_{NN}} = 7.7$ GeV and 14.6 GeV with both the string-melting (SM) and the default version, the dependence of such correlations on collision energies and harmonization schemes will also be discussed.

Ω^- production in HIC

Scenario 1:

Ω^- carries baryon number from colliding nuclei

Strangeness Conservation (SC) > + Baryon Number Transport (BNT)

tion (SC) sport (BNT) Sport (SC) Sport (SC)

Scenario 2:

Strange baryon pair production

Strangeness Conservation (SC) + Baryon Number Conservation (BNC)

At lower RHIC BES energies, below-unity Ω^+/Ω^- ratios can be attributed to production of Ω^- in scenario 1. Due to the unique nature of Ω^- 's quark content (sss), this scenario may be sensitive to exotic baryon number transport mechanism such as the gluon junction^[1], where a Ω^- can be viewed as the result of a Y-shaped gluon junction hadronizing by combining with three s quarks in the QGP matter.

Characterizing Ω^- production scenarios

	ΔN_K	$\Delta N_{ar{B}}$
Scenario 1 (SC+BNT)	3	0
Scenario 2 (SC)	1, 2, 3	1

We expect a stronger Ω^-K correlation in scenario 1 and a stronger $\Omega^-\bar{B}$ correlation in scenario 2.

Correlation Function

Event Mixing Technique:

Can describe the strength and shape of the correlation but is insensitive to the number of hadrons associated with Ω production $C(k^*) = \mathcal{N} \frac{A(k^*)}{B(k^*)}$

 $C(k^*) = \mathcal{N} \frac{A(k^*)}{B(k^*)}$ Same-event distribution Mixed-event distribution

-> Cannot distinguish between scenario 1 and 2

Combinatorial Background Subtraction Method (CBS)

Use same-strangeness-sign pairs to model combinatorial background. Sensitive to both the shape and the quantitative effects different Ω production scenarios induce.

$$C_{\Omega^{-}K^{+}}^{\mathsf{CBS}}(k^{*}) = \frac{dN_{\Omega^{-}K^{+}}/dk^{*}}{N_{\Omega^{-}}} - \frac{dN_{\bar{\Omega}^{+}K^{+}}/dk^{*}}{N_{\bar{\Omega}^{+}}}$$

Comparison between $C_{\Omega^-K^+}^{\text{CBS}}(k^*)$ and $C_{\bar{\Omega}^+K^-}^{\text{CBS}}(k^*)$ —> scenario 1 dynamics

Acknowledgements

This work is supported by the U.S. DOE under the grant number DE-FG02-88ER40424 and the Natural Science Foundation of China under the grant number 11835002.

We thank Zi-Wei Lin for providing the AMPT code and for fruitful discussions on various aspects of the model.

Reference:

[1] D. Kharzeev, Phys. Lett. B **378**, 238 (1996)

[2] Z. Lin, et al, Phys. Rev. C **72**, 064901 (2005) [3] W. Dong, et al, arXiv:2306.15160 [hep-ph]

AMPT^[2] Simulation

More than 50 million min-bias events with both the string-melting (SM) and default versions at 7.7 GeV and 14.6 GeV.

	Hadronization	7.7 GeV		$14.6~\mathrm{GeV}$	
		ΔN_K	$\Delta N_{ar{B}}$	ΔN_K	$\Delta N_{ar{B}}$
SM	Coalescence	2.46	0.017	2.44	0.119
Default	String fragmentation	1.74	0.078	1.76	0.28

Scenario 1 Ω^- production is more prominent in SM version at both 7.7 GeV and 14.6 GeV

Summary

We introduce the novel CBS approach, which is sensitive to dynamics of different Ω^- production scenarios. Both AMPT-SM and AMPT-Default show excess Ω^-K^+ correlation over $\bar{\Omega}^+K^-$ correlation at 7.7 GeV and 14.6 GeV, confirming the existence of scenario 1. AMPT-SM exhibits more significant scenario 1 contribution at 7.7 GeV. Comparison of these results with experimental measurement may reveal dynamical signatures of exotic BNT mechanism such as the gluon junction.