(Anti)nuclear formation using coalescence

e (Antiprotons and (anti)neutrons close in phase-space can coalesce and form a nucleus
e Simplistic implementation: spherical approximation v
o (Ant)nucleons with a relative momentum k*< p, coalesce

o p, Obtained by fitting measurements
e |Improved coalescence model: Wigner function formalism [1]

o Assigns a coalescence probability on an event-by-event basis

o Depending on the nucleus wavefunction

Wigner function formalism  cnmem a3

e Projecting the (antijnucleon density matrix on the deuteron density matrix [1] we have ' —Hulthe;‘(a=0-5fm".B=1-56 fm")
~——xEFT N'LO (S-wave)
— From event generators - -~ YEFT N'LO (D-wave)
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an IS the spatial distribution of nucleons. Assuming a Gaussian source [2] the coalescence -
probability p(g,0) as a function of the relative momentum g and size of the emission [1] EPJA 56 (2020) 1, 4

source o can be derived 5 2] PLB 811 (2020) 135849
p(o,q) = / dryd rnh(rn)h(rp 3] arXiv:2302.12696

This allows us to calculate the coalescence probability for any Wigner function and to prolbe different - ‘

wavefunctions vy for the final state (several options)

Wiq,r) = /d3C U (r + 5/2)\11*(7—,»_ 5’/2)62'6‘5 - (d2d2 2)3/2 -
\\ Repeat for each possible pair in each event

This probability can be applied on each (anti)proton-(antijneutron pair (triplet) in each event

Tuning the event generators (Anti)deuteron spectra

Event generators (EPOS 3, Pythia 8.3) are corrected using measurements: e Once the event generators are tuned to the

e Multiplicity: a HM trigger into the event generator which mimics the trigger used by measurements, this model provides (anti)deuteron
ALICE is implemented, reproducing the average midrapidity multiplicity (35.8 + 0.5) [4] transverse momentum spectrum predictions

Momentum: proton p.. spectra from [4] used to calibrate each (anti)nucleon p. Excellent agreement with the measured distribution [4] is
distribution found when using a realistic wavefunction (Argonne v, )

Resonance cocktail: tuned to reproduce Statistical Hadronisation Model yields Coalescence model is sensitive to the source size and

Source size: tuned to the r, measured in pp collisions at 13 TeV with a HM trigger nucleus wavefunction
(0-0.01%) by ALICE (primordials + resonances) No free parameters!

\Wavetunction: several wavefunctions are tested

— This model can be extended to any collision
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The emission source

The size of the particle emission source is an important input for 5
the coalescence model

The source size measured by ALICE [2] is used
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After the resonance abundancies are tuned to SHM, particles
are propagated on an event-by-event basis

The native source size dpn”ative is obtained
m.—dependent scaling is finally tuned to data
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