

Advanced coalescence model based on the Wigner function formalism

Maximilian Horst¹, <u>Chiara Pinto</u>¹, Laura Fabbietti¹, Francesca Bellini², Luca Barioglio³, Bhawani Singh¹, Sushanta Tripathy^{2,4} ¹Technical University of Munich, ²University of Bologna, ³INFN of Torino, ⁴CERN

Quark Matter 2023 – Houston, TX

(Anti)nuclear formation using coalescence

- (Anti)protons and (anti)neutrons close in phase-space can coalesce and form a nucleus
- Simplistic implementation: spherical approximation
 - (Anti)nucleons with a relative momentum $k^* < p_0$ coalesce
 - \circ p_0 obtained by fitting measurements
- Improved coalescence model: Wigner function formalism [1]
 - Assigns a coalescence probability on an event-by-event basis
 - Depending on the nucleus wavefunction

Wigner function formalism

- Projecting the (anti)nucleon density matrix on the deuteron density matrix [1] we have
 - From event generators

 $d^{3}N/dP^{3} = S \int d^{3}q \int d^{3}r_{p} \int d^{3}r_{n} W(q,r) W(q,r) W_{np}(p_{n},p_{p},r_{n},r_{p})/(2\pi)^{6}$

Deuteron Wigner function of Wigner function the p-n state

being
$$(W_{np})(\vec{P}/2 + \vec{q}, \vec{P}/2 - \vec{q}, r_n, r_p) = (H_{np})(\vec{r}_n, \vec{r}_p)(G_{np})(\vec{P}/2 + \vec{q}, \vec{P}/2 - \vec{q})$$

Nucleon momentum phase-space

- $H_{\rm np}$ is the spatial distribution of nucleons. Assuming a Gaussian source [2] the coalescence probability p(q, σ) as a function of the relative momentum q and size of the emission source σ can be derived $p(\sigma,q) = \int d^3r_p d^3r_n h(r_n) h(r_p) W(q,r)$
- ullet This allows us to calculate the coalescence probability for any Wigner function and to probe different wavefunctions ψ for the final state (several options)

$$W(\vec{q},\vec{r}) = \int d^3\zeta \ \Psi(\vec{r} + \vec{\zeta}/2) \Psi^*(\vec{r} - \vec{\zeta}/2) e^{i\vec{q}\vec{\zeta}} \label{eq:W}$$

This probability can be applied on each (anti)proton-(anti)neutron pair (triplet) in each event

Tuning the event generators

Event generators (EPOS 3, Pythia 8.3) are corrected using measurements:

- Multiplicity: a HM trigger into the event generator which mimics the trigger used by ALICE is implemented, reproducing the average midrapidity multiplicity (35.8 \pm 0.5) [4]
- Momentum: proton p_T spectra from [4] used to calibrate each (anti)nucleon p_T distribution
- Resonance cocktail: tuned to reproduce Statistical Hadronisation Model yields
- Source size: tuned to the r_0 measured in pp collisions at 13 TeV with a HM trigger (0-0.01%) by ALICE (primordials + resonances)
- Wavefunction: several wavefunctions are tested

The emission source

- The size of the particle emission source is an important input for the coalescence model
- The source size measured by ALICE [2] is used
- After the resonance abundancies are tuned to SHM, particles are propagated on an event-by-event basis
- The native source size d_{pn}^{native} is obtained
- $m_{\rm T}$ -dependent scaling is finally tuned to data

(Anti)deuteron spectra

- Once the event generators are tuned to the measurements, this model provides (anti)deuteron transverse momentum spectrum predictions
- Excellent agreement with the measured distribution [4] is found when using a realistic wavefunction (Argonne v_{18})
- Coalescence model is sensitive to the source size and nucleus wavefunction
- No free parameters!

ightharpoonup This model can be extended to any collision energy, if nucleon p_{T} spectra and emitting source size measurements are provided

[4] JHEP 01 (2022) 106