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Abstract: To understand how the event-by-event fluctuations of the final-state nucleon distributions f(r, p) affect the
vield ratio of light nuclei NPNt/NO,2 qualitatively, we model the ensemble of f(r, p) by the overlap of random n-Gaussian
hot spots and obtain analytical formulae based on the coalescence model, which is used to establish qualitative

understanding.

1. Background and Motivation

M Critical-point search in heavy-ion collisions
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3. Results of n-Gaussian hot-spot model

B Analytic result of yield of light nuclei (event averaged)
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N,: triton yield, N,,: proton yield, N,: deuteron yield

< Calculated by the coalescence model from the nucleon distribution f(r, p).
¢/ Sensitive to local spatial correlations, i.e., critical correlations

¢/ Cancels unwanted volume effect, etc. in the ratio
¢ Non-monotonic behaviors found in experimental data

B Dynamical effects in realistic collisions

by these factors

B Yield ratio in limits n =1 and n=> o

n=1: single Gaussian, Ratio = 4/9 (ideal value)
n=o=: infinite number of hot spots Ratio = 4/9 (fluctuations smeared out)

M Yield ratio for 2-Gaussian case (n = 2)
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v/ Magnitude fluctuations decrease the ratio

the event by event fluctuations, affect N, N

/N 2?

v/ Position fluctuations increase the ratio

Event-by-event f(l)(r p) f(2)(r p) f(3)(r, p)’

B Fluctuation dimensionality

B Many Gaussians n-dependence
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2. Model: fluctuating n-Gaussian hot spots AR Sov R TI .
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B Coalescence model A2 Number of hot spots 1 #

Nucleus of mass number A is formed by nucleons that are close in phase space.

Ny = gA/ Wa({ri,pi}is)

sudden frzout
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Assumed to be

v/ The increase largely depends on the dimensionality

v/ A peak at a certain hot-spot number “n”

4. Two fluctuation sources

B Extended Model

B Result
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(E.g. critical fluctuations vs shorter-

W Single-event f(r, p) by n-Gaussian hot spots scale thermal fluctuations).
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Question: When scale separation of two

n Number of hot spots
fluctuations are not sufficient in HIC
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hs Covariance; hot-spot can we differentiate them?

G: Gaussian profile
2 size/shape in R®

Fluct #2 covariance in phase space: Cs2

[Fireball cov: Ch¢ =10.0, fluct dim: d = 2]

g,: nucleus size v The effect becomes larger when two sources have different sizes

A}, Center of hot spot h Ch, Magnitude of hot spot h

5. S ummary

A Introduced “fluctuating n-Gaussian hot spots” for coalescence f(r, p)
* Yield ratio of light nuclei is largely affected by e-by-e fluctuations:

B Ensemble of {f(r, p)} by randomizing (a,, c,)

a, distribution
Gaussian distribution of hot-spot centers a,
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Position/magnitude fluctuations increase/decrease the ratio. The
dimensionality and # of hot spots also matter.

 Scale separation of two fluctuation sources make effect larger
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Chc  Covariance of hot-spot centers
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