

Effect of Hydrodynamic Fluctuations on Mixed Harmonic Cumulants at the LHC

Kazuki Oshima⁴ Koichi Murase¹, Chiho Nonaka^{2,3,4,5}, and Azumi Sakai²

¹Yukawa Institute for Theoretical Physics, Kyoto University, ²Physics Program, Hiroshima University ³International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM²), Hiroshima University ⁴Department of Physics, Nagoya University, ⁵Kobayashi-Maskawa Institute, Nagoya University

Introduction

Purpose

- Effect of hydrodynamic fluctuations on observables
- Relation between determination of viscosity of QGP and hydrodynamic fluctuations

Hydrodynamic Fluctuations

$$\left\langle \xi^{\mu\nu}(x)\xi^{\alpha\beta}(x')\right\rangle = 4\eta(x)T(x)\Delta^{\mu\nu\alpha\beta}\delta^{(4)}(x-x')$$
$$\left\langle \xi^{\mu\nu}(x)\right\rangle = 0$$

Hydrodynamic fluctuation is included through the noise term

Mixed Harmonic Cumulants $MHC(v_m^k, v_n^l)$

 Property Sensitive to viscosity Comparison of models Example $MHC\left(v_2^2, v_3^2\right) = \left\langle v_2^2 v_3^2 \right\rangle - \left\langle v_2^2 \right\rangle \left\langle v_3^2 \right\rangle$ $MHC\left(v_2^2, v_4^2\right) = \left\langle v_2^2 v_4^2 \right\rangle - \left\langle v_2^2 \right\rangle \left\langle v_4^2 \right\rangle$ $MHC\left(v_2^4, v_3^2\right) = \left\langle v_2^4 v_3^2 \right\rangle - 4 \left\langle v_2^2 v_3^2 \right\rangle \left\langle v_2^2 \right\rangle - \left\langle v_2^4 \right\rangle \left\langle v_3^2 \right\rangle + 4 \left\langle v_2^2 \right\rangle^2 \left\langle v_3^2 \right\rangle$

Normalized Mixed Harmonix Cumulant

nMHC = normalized Mixed Harmonic Cumulant

Ming Li, You Zhou, Wenbin Zhao, Baochi Fu, Yawen Mou, and Huichao Song, Pays. Rev. C 104, (2021) 024903 ALICE Collaboration, Phys. Lett. B 818, (2021) 136354

Model

- **EoS**: Lattice QCD(NPA929) M. Bluhm, P. Alba, W. Alberico, A. Beraudo and C. Ratti, Nucl. Phys. A 929 (2014) 157
- Hydrodynamic <u>fluctuations</u>
 - Cutoff parameter

$$\lambda_{\eta} = 2.0, \ \lambda_{\perp} = 2.0 \text{ [fm]}$$
A. Sakai, K. Murase, and T. Hirano, Phys. Lett. B 829, 137053 (2022)

- Parameters in TRENTo
 - p = 0 (IP-Glasma)
 - ► n = 130 (T-dependent), n = 145 (KSS bound)

Viscosity

- ► 1)T dependence
- ► 2KSS bound

Results

Viscosity dependence

Smaller viscosity $\rightarrow nMHC$ decrease Consistent with previous study

Hydrodynamic fluctuations Decrease *nMHC* → Smaller viscosity

Viscosity dependence No viscosity dependence

Hydrodynamic fluctuations Decrease *nMHC* magnitude

Viscosity dependence No viscosity dependence

Hydrodynamic fluctuations Decrease *nMHC* magnitude

Summary

We investigated the effect of hydrodynamic fluctuations on mixed harmonic cumulant $nMHC(v_m^k, v_n^l)$

Analyzed:

 $nMHC(v_2^2, v_3^2), nMHC(v_2^2, v_4^2), nMHC(v_2^4, v_3^2)$

 $nMHC(v_2^2, v_3^2)$ and $nMHC(v_2^4, v_3^2)$:

No viscosity dependence

Sensitive to hydrodynamic fluctuations

Mixed harmonic cumulants $nMHC(v_m^k, v_n^l)$ Key for

- → Understanding the properties of hydrodynamic fluctuations
- → Determination of viscosity value

Hydrodynamic fluctuations play an important role in determination of viscosity