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• The light-nuclei production with the critical fluctuations can be evaluated by 

introducing the correction of phase-space distribution from  the order parameter 

field:

𝑓 = 𝑓0 + 𝛿𝑓 = 𝑓0[1 − 𝑔𝜎𝜎/𝛾𝑇]

• The yield of light nuclei near QCD critical point can be expressed in terms of the 

phase-space cumulant

𝑁𝐴 𝜎 = 𝑔𝐴8
𝐴−1𝑁𝑝

𝐴 det 𝐶2 + 𝑐𝑜𝑛𝑠𝑡. − 𝐴−1 /2[1 − ෨Ξ(𝐴)]

• where the critical contribution ෨Ξ 𝐴 = σ𝑏=2
𝐴 −1 𝑏 𝑏

𝐴
g𝜎
b Π𝑗=1

𝑏 𝜎 𝒓𝑗 𝜎
. Due to 

the similar structure related to the second-order phase-space cumulants 𝐶2, the 

combinations such as

෨𝑅 𝐴, 𝐵 = 𝑅𝐴,𝐵
1−𝐵,𝐴−1 − 𝑔𝐵

𝐴−1𝑔𝐴
−(𝐵−1)

,

෨𝑅 𝐴, 𝐵, 𝐷 = 𝑅𝐴,𝐵
1−𝐵,𝐴−1 − 𝑔𝐵

𝐴−1𝑔𝐷
−

𝐴−1 𝐵−1

𝐷−1 𝑅𝐴,𝐷
1−𝐷,𝐴−1 (𝐵−1)/(𝐷−1)

,

• (here 𝑅𝐴,𝐵
1−𝐵,𝐴−1 = 𝑁𝐵 𝜎

𝐴−1 𝑁𝐴 𝜎
1−𝐵𝑁𝑝

𝐵−𝐴)greatly suppress the contribution from 

the background scales in 𝐶2which helps to isolate the effects related to the 

correlation signal.

• As an example, the critical correlators Π𝑗=1
𝑏 𝜎 𝒓𝑗 can be obtained by mapping 

from the three-dimensional Ising model, and we takes the Gaussian phase-space 

distribution 𝑓0. The new light-nuclei combinations in the critical regime behaves 

as :

• where 𝑟 ∼ −(𝜇 − 𝜇𝑐) is the Ising variable and mapping to the chemical potential. 

The blue and red curves correspond to the small and large critical effects, 

respectively. The left plot corresponds to ෨𝑅 2,3 ∼ 𝜎 𝑟1 𝜎 𝑟2 − 𝜎 𝑟1 𝜎 𝑟2
2

and ෨𝑅 2,3 reaches a peak near 𝜇𝑐 because the contribution from 𝜎 𝑟1 𝜎 𝑟2 .
෨𝑅(2,3) also has a small dip arising from the negative contribution of 

𝜎 𝑟1 𝜎 𝑟2
2 when critical signal is sufficiently large. The dip is more obvious 

in the right plot of the ratio ෨𝑅 2,3,4 ∼ 𝜎 𝑟1 𝜎 𝑟2 − 4 𝜎 𝑟1 𝜎 𝑟2
2 because 

of the larger negative contribution from 𝜎 𝑟1 𝜎 𝑟2
2.

• Searching the QCD critical point is one of the most important goals of the 

Relativistic Heavy-Ion Collisions. Preliminary non-monotonic behavior of higher 

order cumulants of net-proton multiplicity has been observed [1] and indicating 

the possible existence of the QCD critical point.

• Non-monotonic behavior of the light-nuclei yield ratio 𝑁𝑡𝑁𝑝/𝑁𝑑
2 also been 

observed [2] and is expected to be the consequence of the critical fluctuations [3].
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Light-nuclei production near the QCD critical point

• In the coalescence model, the production of light nuclei 𝑁𝐴 is given by:

𝑁𝐴 = 𝑔𝐴∫ Π𝑖
𝐴 𝑑3𝒓𝑖𝑑

3𝒑𝑖𝑓 𝒓𝑖 , 𝒑𝑖 𝑊𝐴( 𝒓𝑖 , 𝒑𝑖 𝑖
𝐴)

where 𝑔𝐴 is the statistical factor from the spin and 𝑓 𝒓𝑖 , 𝒑𝑖 is the phase-space 

distribution function for the constituent nucleons. 

• 𝑊𝐴( 𝒓𝑖 , 𝒑𝑖 𝑖
𝐴) is the Wigner function corresponding the light-nuclei wave 

function(Gaussian form of Wigner function is used in this work). One of the 

most important properties of Wigner function is that it only depends on the 

relative distance of the constituent nucleons 𝒛𝑖 − 𝒛𝑗, not the (𝒛𝑖+𝒛𝑗)/2.

Light-Nuclei Yield in Terms of Phase-Space Cumulants[4]

• To analyze the phase-space effects in the light-nuclei production, we employ the 

phase-space cumulants with the characteristic function:

𝑓 𝒛𝑖 = 𝑁𝑝∫
𝑑6𝒕𝑖
2𝜋 6

𝑒−𝑖𝒕𝑖⋅𝒛𝑖exp[ 

𝜶∈𝑁0
6

𝑪𝜶
𝜶!

𝑖𝒕𝑖
𝜶]

• where 𝑪𝜶 = ∫ 𝑑𝟔𝒛𝑓 𝒛 𝒛𝜶 is the phase-space cumulants with order of |𝜶|. Then 

the yield is expressed as

𝑁𝐴 = 𝑔𝐴𝑁𝑝
8𝑁𝑝

√det 𝑪2 + 𝑐𝑜𝑛𝑠𝑡.

𝐴−1

[1 + 𝑂( 𝑪𝜶 |𝛼|≥3)]

• where 𝑪2 is the second order phase-space cumulant, corresponding to the 

Gaussian distribution. 𝑂( 𝑪𝜶 |𝛼|≥3) denotes the contribution from the higher 

order phase-space cumulants.

• One can see that the yield 𝑁𝐴 for different light nuclei 𝐴 share analogous 

expression up to second-order phase-space cumulant 𝑪2. In particular, the explicit 

expression of 𝑪2 takes the form:

𝐶2 = 2
𝒓𝒓𝑇 /𝜎2 ⟨𝒓𝒑𝑇⟩

⟨𝒑𝒓𝑇⟩ 𝜎2⟨𝒑𝒑𝑇⟩

• where the coordinate 𝒓𝒓𝑇 , momentum ⟨𝒑𝒓𝑇⟩ and coordinate-momentum ⟨𝒓𝒑𝑇⟩

correlation respectively encode the geometric, thermal and dynamical properties 

of the profile at freeze-out. The corresponding relevant scales are fireball size 𝑅, 

homogeneity length 𝑙 and freeze-out temperature 𝑇𝑓𝑜, respectively.

• 𝑁𝑑 , 𝑁𝑡, 𝑁4𝐻𝑒 depends on fireball size, homogeneity length, freeze temperature in 

analogous way when nucleon distribution close to Gaussian and the light-nuclei 

yield can be expressed in terms of the phase-space cumulants up to second order 

in similar structure.

• Therefore, we can construct the new ratios to suppress the background effects, 

such that the ratios are sensitive to the critical signal. We found that long range 

correlation results a peak, and the square of 2-point correlation induces a double 

peak in the new ratios.

• Essentially, the relevant scales for the 

light-nuclei production roughly include 

the fireball size at freeze-out 𝑅, 

homogeneity length 𝑙 and freeze-out 

temperature. These scales are typically

much larger than the critical correlation 

length 𝜉 when the light nuclei is produce 

not so close to the critical regime. In 

other word, the background effect is 

large comparing the critical signal in the 

light-nuclei production.

𝝃

𝑹 : Fireball size 𝒍:homogeneity length 𝝃: correlation length

𝑅

• This poster will address the critical fluctuations considering the large background 

effects in the light-nuclei production.

• One example of the phase-space 

distribution function is Gaussian 

distribution:

𝑓 𝒓, 𝒑 =
𝜌0

2𝜋𝑚𝑇 3/2
𝑒𝑥𝑝[−

𝒓2

2𝑅𝑠
2 −

𝒑2

2𝑚𝑇
]

leading to the similar expression for 𝑁𝑡 and 

𝑁𝑑:

𝑁𝑑 = 𝑔𝑑𝑁𝑝
2 𝑅𝑠

2 +
𝜎𝑑
2

2
𝑚𝑇 +

1

2𝜎𝑑
2

−3/2

𝑁𝑡 = 𝑔𝑡𝑁𝑝
3 𝑅𝑠

2 +
𝜎𝑡
2

2
𝑚𝑇 +

1

2𝜎𝑡
2

−3

• If the light-nuclei size difference is negligible (𝜎𝑑 = 2.26, 𝜎𝑡 = 1.59fm), then 

the effects from Gaussian profile exactly cancels:
𝑁𝑡𝑁𝑝

𝑁𝑑
2 =

𝑔𝑡

𝑔𝑑
2 =

4

9

One can see 𝑁𝑡𝑁𝑝/𝑁𝑑
2 is a constant v.s. the variance of phase-space distribution 

𝑟2
1/2

for Gaussian distribution but decreases in the case of Woods-Saxon 

distribution.
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