OPEN HEAWY-FLAWOUR AND QUARKONIUM MEASUREMENTS WITH NA60+

quarkonium as probes of the quark gluon plasma

Heavy ions at low energy: fixed target experiments

open charm

very few results

- indirect open charm measurement by NA60 with 20% uncertainty ($1 < M_{\text{LLL}} < 2.5 \text{ GeV/c}^2$)
- upper limit on D⁰ by NA49

quarkonium

many results for J/ ψ , ψ (2S) by NA50/60, but only at top SPS energy

NEW high precision open and hidden charm measurements would allow to

- probe the medium at lower T wrt collider experiments
- explore a non-zero μ_R region

new experiment proposed at CERN SPS:

Goals in the heavy quarks sector

high precision measurements of

- dimuon spectrum from threshold to the charmonium mass region
- hadronic decays of charm and strange hadrons

Setup

- Muon spectrometer
- Vertex spectrometer

Energy/systems

- Pb-Pb and p-A collisions
- energy scan $6 < \sqrt{s} < 17 \text{ GeV/c}$ (20 $< E_{lab} < 158 \text{ GeV/c}$)

Open heavy flavour and

high luminosity ~10⁶ Pb/s

1. QGP transport properties

Charm diffusion coefficient depends on T, being larger in the hadronic than in QGP phase

At SPS

- temperatures closer to T_{PC} can be explored
 hadronic phase is a large part of the collision evolution → sensitivity to hadronic interactions

2. hadronisation mechanisms

Measure the relative abundances of charm-hadrons (D⁰, D⁺, D⁺_s mesons and Λ_c baryons) at high μ_B

- Strange/non-strange meson ratio (D_s/D⁰) → enhanced in AA due to recombination in the strangeness rich QGP
- Baryon/meson ratio (Λ_c/D) enhanced in AA in case of hadronisation via coalescence

3. charm thermalization

Impact on charm of a shorter-lived medium

• current measurements on HF-decay electron v_2 at RHIC $\sqrt{s_{NN}}$ = 39 and 62 GeV/c show small v_2^2 wrt 200 GeV, not conclusive on $v_2>0$

4. total charm cross section

Measurements so far (NA60,NA49) limited by low yields

- precise measurement requires to reconstructs mesons and baryons ground states
- ideal reference for charmonia

How to measure

Measured through hadronic decays reconstructed in the vertex telescope

Fast simulation:

1) D-meson signal: simulated with p_{τ} and y distributions from POWHEG-BOX + PYTHIA Combinatorial background: π , K, p with NA49, p_{τ} , y, multiplicity shapes

pK⁰_s

6.28%

1.59% 1.30%

Particle transport: carried out in the VT, with parametrized simulation of its resolution Track reconstruction: Kalman filter

D-meson vertex reconstructed from decay tracks

Combinatorial background reduced via geometric selection on displaced decay vertex topology

D^0 in central PbPb: initial S/B ~10⁻⁷ → after selections S/B ~0.5

hadron absorber p/Pb beam target + vertex muon wall muon telescope spectrometer

Cold and hot matter effects LHC/RHIC

Hot matter effects suppression and

suppression Initial state effects

mainly shadowing (anti)shadowing $10^{-5} < x_{B1} < 10^{-2} \text{ for } -3 < y < 3$ $x_{\rm B1}^{\sim} 10^{-1} \, \text{for y} \sim 0$

Final CNM effects

negligible → short crossing time $\tau = L/(\beta_{\tau}\gamma)$ ~ $7 \cdot 10^{-5} (y~3) - 4 \cdot 10^{-2} (y~-3) \text{ fm/c}$

Role of intrinsic charm

3. pA: intrinsic charm

regeneration

• fixed target is the ideal configuration → enhancement closer to mid-y

1. AA: hot matter effects

Onset of charmonium suppression, accessible via energy scan

 evaluate the charmonium melting threshold T correlating the onset with temperature measured via thermal dimuons

Quarkonium at low Vs

2. pA: cold nuclear matter effects

Role of initial and final CNM effects and their \s dependence

- CNM effects increase at low \sqrt{s} + they have to be studied at the same \s as AA, for a correct evaluation of hot matter effects
- Possibility to disentangle the various contributions (shadowing, nuclear breakup...)

open charm in NA60+

Measured via:

enhanced charm production expected at large x₋

• J/ψ and $\psi(2S)$ in the $\mu^+\mu^-$ decay channel • $\chi_c \rightarrow J/\psi \gamma$, with γ measured via conversion in a lepton pair in the vertex telescope

• first evidence recently claimed by NNPDF group based on LHCb data (Nature 608, 483 (2022))

• dominant effect even with 0.1% probab. of intrinsic charm contribution in the proton (R. Vogt. PRC 103 (2021)3, 035204)

How to measure charmonium in NA60+

Pb-Pb, 0<y<1, I=10⁷/spill, L_{tora}=7.5 mm

NA60+, $J/\psi \rightarrow \mu^+\mu^-$

pA, E_{beam} = 50 GeV

 5×10^{13} p on targets

---- E_{beam}=120 GeV

0.2 E_{lab} = 50 GeV

low energy

0.18 $\alpha_{J/\psi}^{pA} = 0.93$ (as measured at $E_{lab} = 400 \text{ GeV}$)

₹ 0.28

P 0.26 -

[↑]0.24

² 0.22 −

- Muon tracks reconstructed matching tracks in vertex and muon spectrometer \rightarrow very good mass resolution, ~30 MeV for the J/ ψ
- High luminosity is needed to cope with the low
- production cross sections at low \s

open charm performance studies

1869

1968

2285

$D^{O} \rightarrow K\pi$ $3\,10^6\,D^0$ in Pb-Pb 0-5%, $\sqrt{s_{_{NN}}}$ =17.3 GeV

 \rightarrow R_{AA} and v₂ vs p_T, y and centrality accessible also at lower $\sqrt{s_{NN}}$ with ~1% statistical precision

Pb-Pb, $\sqrt{s_{NN}}$ =10.6 GeV, centrality 0-5%

1e+11 MB events

_ = 60 GeV

 $D^0 \to K\pi,\, p_{_T} {>} 0$

Assumption: $\sigma_{c\bar{c}} = 0.5 \,\mu b$

$D_s \to \phi \pi \to KK\pi$ measurement of yields

feasible, statistical precision of few percent

accessible, possible improvement with timing layers under study

 $\Lambda_c \to pK\pi$

J/ψ statistics

Pb-Pb:

• I_{beam}~10⁷ Pb/spill, 7.5 mm target (8.5 g cm⁻²), 1 month data taking→ L_{int}~24 nb⁻¹

Quarkonium performance \sim O(10⁴) J/ ψ at 50 GeV \sim O(10⁵) J/ ψ at 158 GeV studies

(CNM+QGP)

~8000 J/ψ at 50 GeV

E_{lab} = 100 GeV Precise evaluation of anomalous suppression within reach even at

-- 150 GeV $\alpha_{J/\psi}^{PA} = 0.93 \text{ in p-A}$ 10% anomalous suppression signal

detectable at 3σ for $E_{lab} > 100$ AGeV 20% anomalous suppression signal

detectable at 3σ for $E_{lab} > 50$ GeV

NA60+: new experiment proposed at CERN SPS

B $(3\sigma) = 1028262 \pm 285$

 $S/B (3\sigma) = 0.3594$

- https://na60plus.ca.infn.it/ Complete coverage of em and hard probes
 - Collider Initiative
- LOI in 2022 → arXiv:2212.14452

