OPEN HEAWY-FLAWOUR AND QUARKONIUM MEASUREMENTS WITH NA60+ quarkonium as probes of the quark gluon plasma ## Heavy ions at low energy: fixed target experiments #### open charm very few results - indirect open charm measurement by NA60 with 20% uncertainty ($1 < M_{\text{LLL}} < 2.5 \text{ GeV/c}^2$) - upper limit on D⁰ by NA49 #### quarkonium many results for J/ ψ , ψ (2S) by NA50/60, but only at top SPS energy #### NEW high precision open and hidden charm measurements would allow to - probe the medium at lower T wrt collider experiments - explore a non-zero μ_R region # new experiment proposed at CERN SPS: #### Goals in the heavy quarks sector high precision measurements of - dimuon spectrum from threshold to the charmonium mass region - hadronic decays of charm and strange hadrons #### Setup - Muon spectrometer - Vertex spectrometer #### **Energy/systems** - Pb-Pb and p-A collisions - energy scan $6 < \sqrt{s} < 17 \text{ GeV/c}$ (20 $< E_{lab} < 158 \text{ GeV/c}$) Open heavy flavour and high luminosity ~10⁶ Pb/s #### 1. QGP transport properties Charm diffusion coefficient depends on T, being larger in the hadronic than in QGP phase #### At SPS - temperatures closer to T_{PC} can be explored hadronic phase is a large part of the collision evolution → sensitivity to hadronic interactions ### 2. hadronisation mechanisms Measure the relative abundances of charm-hadrons (D⁰, D⁺, D⁺_s mesons and Λ_c baryons) at high μ_B - Strange/non-strange meson ratio (D_s/D⁰) → enhanced in AA due to recombination in the strangeness rich QGP - Baryon/meson ratio (Λ_c/D) enhanced in AA in case of hadronisation via coalescence #### 3. charm thermalization Impact on charm of a shorter-lived medium • current measurements on HF-decay electron v_2 at RHIC $\sqrt{s_{NN}}$ = 39 and 62 GeV/c show small v_2^2 wrt 200 GeV, not conclusive on $v_2>0$ #### 4. total charm cross section Measurements so far (NA60,NA49) limited by low yields - precise measurement requires to reconstructs mesons and baryons ground states - ideal reference for charmonia # How to measure Measured through hadronic decays reconstructed in the vertex telescope ## Fast simulation: 1) D-meson signal: simulated with p_{τ} and y distributions from POWHEG-BOX + PYTHIA Combinatorial background: π , K, p with NA49, p_{τ} , y, multiplicity shapes pK⁰_s 6.28% 1.59% 1.30% Particle transport: carried out in the VT, with parametrized simulation of its resolution Track reconstruction: Kalman filter D-meson vertex reconstructed from decay tracks Combinatorial background reduced via geometric selection on displaced decay vertex topology # D^0 in central PbPb: initial S/B ~10⁻⁷ → after selections S/B ~0.5 # hadron absorber p/Pb beam target + vertex muon wall muon telescope spectrometer #### **Cold and hot matter effects** LHC/RHIC Hot matter effects suppression and suppression Initial state effects mainly shadowing (anti)shadowing $10^{-5} < x_{B1} < 10^{-2} \text{ for } -3 < y < 3$ $x_{\rm B1}^{\sim} 10^{-1} \, \text{for y} \sim 0$ Final CNM effects negligible → short crossing time $\tau = L/(\beta_{\tau}\gamma)$ ~ $7 \cdot 10^{-5} (y~3) - 4 \cdot 10^{-2} (y~-3) \text{ fm/c}$ Role of intrinsic charm 3. pA: intrinsic charm regeneration • fixed target is the ideal configuration → enhancement closer to mid-y # 1. AA: hot matter effects Onset of charmonium suppression, accessible via energy scan evaluate the charmonium melting threshold T correlating the onset with temperature measured via thermal dimuons Quarkonium at low Vs # 2. pA: cold nuclear matter effects Role of initial and final CNM effects and their \s dependence - CNM effects increase at low \sqrt{s} + they have to be studied at the same \s as AA, for a correct evaluation of hot matter effects - Possibility to disentangle the various contributions (shadowing, nuclear breakup...) # open charm in NA60+ Measured via: enhanced charm production expected at large x₋ • J/ψ and $\psi(2S)$ in the $\mu^+\mu^-$ decay channel • $\chi_c \rightarrow J/\psi \gamma$, with γ measured via conversion in a lepton pair in the vertex telescope • first evidence recently claimed by NNPDF group based on LHCb data (Nature 608, 483 (2022)) • dominant effect even with 0.1% probab. of intrinsic charm contribution in the proton (R. Vogt. PRC 103 (2021)3, 035204) How to measure charmonium in NA60+ ----- Pb-Pb, 0<y<1, I=10⁷/spill, L_{tora}=7.5 mm NA60+, $J/\psi \rightarrow \mu^+\mu^-$ pA, E_{beam} = 50 GeV 5×10^{13} p on targets ---- E_{beam}=120 GeV 0.2 E_{lab} = 50 GeV low energy 0.18 $\alpha_{J/\psi}^{pA} = 0.93$ (as measured at $E_{lab} = 400 \text{ GeV}$) ₹ 0.28 P 0.26 - [↑]0.24 ² 0.22 − - Muon tracks reconstructed matching tracks in vertex and muon spectrometer \rightarrow very good mass resolution, ~30 MeV for the J/ ψ - High luminosity is needed to cope with the low - production cross sections at low \s # open charm performance studies 1869 1968 2285 # $D^{O} \rightarrow K\pi$ $3\,10^6\,D^0$ in Pb-Pb 0-5%, $\sqrt{s_{_{NN}}}$ =17.3 GeV \rightarrow R_{AA} and v₂ vs p_T, y and centrality accessible also at lower $\sqrt{s_{NN}}$ with ~1% statistical precision Pb-Pb, $\sqrt{s_{NN}}$ =10.6 GeV, centrality 0-5% 1e+11 MB events _ = 60 GeV $D^0 \to K\pi,\, p_{_T} {>} 0$ Assumption: $\sigma_{c\bar{c}} = 0.5 \,\mu b$ ### $D_s \to \phi \pi \to KK\pi$ measurement of yields feasible, statistical precision of few percent accessible, possible improvement with timing layers under study $\Lambda_c \to pK\pi$ # J/ψ statistics ## Pb-Pb: • I_{beam}~10⁷ Pb/spill, 7.5 mm target (8.5 g cm⁻²), 1 month data taking→ L_{int}~24 nb⁻¹ Quarkonium performance \sim O(10⁴) J/ ψ at 50 GeV \sim O(10⁵) J/ ψ at 158 GeV studies (CNM+QGP) ~8000 J/ψ at 50 GeV **E**_{lab} = 100 GeV Precise evaluation of anomalous suppression within reach even at -- 150 GeV $\alpha_{J/\psi}^{PA} = 0.93 \text{ in p-A}$ 10% anomalous suppression signal detectable at 3σ for $E_{lab} > 100$ AGeV 20% anomalous suppression signal detectable at 3σ for $E_{lab} > 50$ GeV # NA60+: new experiment proposed at CERN SPS B $(3\sigma) = 1028262 \pm 285$ $S/B (3\sigma) = 0.3594$ - https://na60plus.ca.infn.it/ Complete coverage of em and hard probes - Collider Initiative - LOI in 2022 → arXiv:2212.14452