ATLAS measurement of mean momentum fluctuations and correlations with the flow in Xe+Xe, and Pb+Pb

Tomasz Bold* - on behalf of the ATLAS Collaboration,
*AGH University of Krakow, Poland
Quark Matter 2023, Huston, TX, USA
September 3-9, 2023

$v_n - [p_T]$ correlation measurement

- ATLAS measured $v_n [p_T]$ correlation coefficient ρ in Pb+Pb (and p+Pb)
 - Precise tool for initial stage imaging sensitive to correlation between energy density & initial state deformation - not so much on details of QGP evolution
- The measurement of ρ in Xe+Xe relative to Pb+Pb indicated difference attributed to the shape of Xe nuclei
- The $[p_T]$ & c_k also exhibit an interesting evolution: investigated in followup measurement shown in this talk

$$\rho_n = \frac{\text{cov}_n}{\sqrt{\text{var}(v_n^2)}\sqrt{c_k}}, \quad \text{cov}_n = \langle\langle v_n^2 \delta p_T \rangle\rangle,$$

$$\operatorname{var}(v_n^2) = \langle v_n^4 \rangle - \langle v_n^2 \rangle^2, \quad c_k = \langle \langle \delta p_{\mathrm{T}} \delta p_{\mathrm{T}} \rangle \rangle.$$

Where:
$$\delta p_T = p_T - \langle [p_T] \rangle$$

Various methods to combined information from sub-events

ρ_2 in Pb+Pb, Xe+Xe and its ratio

PHYSICAL REVIEW C 107, 054910 (2023)

- Significant variation with centrality
- Different between the Xe+Xe and Pb+Pb, yet the ratio almost constant
- The ratio sensitive to initial shape projectiles shape
 - a very good description in simulation (Trento) allowed data to discern Xe nuclei shape it is strongly triaxial

The UCC events

- In the UCC, b o 0, (about 1.5% most central) the trends of ρ, cov, Var, c_k change behaviour
- The b o 0 reduces the initial geometry fluctuations and thus reduced variance of flow harmonics
- ullet Trend in c_k (measure of momentum fluc.) also change, reduced fluctuations investigated further

Constraining Initial State in Xe+Xe and Pb+Pb using $[p_T]$ Fluctuations with ATLAS

ATLAS-CONF-2023-061

- Evolution of $[p_T]$ distribution moments with centrality (N_{ch} scaling)
- A close look at the evolution of moments of $[p_T]$ in UCC
- Pb+Pb & Xe+Xe comparison
- Comparison to models aiming at description of $[p_T]$ fluctuation

Motivation

Giacalone, PRC, **102**, 024901 (2020)

- Two contributions to $[p_T]$ fluctuations
 - Geometric fluctuation radial flow

- Intrinsic fluctuations quantum (initial state) + thermal (evolution)
- By constraining size fluctuations going to UCC access the magnitude of intrinsic part

Measured quantities

- An n-particle transverse momentum correlator defined:
- Moments: central $\langle [p_T] \rangle$, scaled variance k_2 , scaled skewness k_3 , normalised skewness γ
- Averaged over activity class: N_{ch}^{rec} number of reconstructed charged particles ΣE_T^{FCal} energy in ATLAS Forward calorimeter (default centrality estimator)
 - Estimators scaled for comparison by values in the 0-1% centrality bin

$$c_n = \frac{\sum_{i_1 \neq \neq i_n} w_{i_1} ..w_{i_n} (p_{T,i_1} - \langle [p_T] \rangle) ... (p_{T,i_n} - \langle [p_T] \rangle)}{\sum_{i_1 \neq \neq i_n} w_{i_1} ... w_{i_n}}$$

Where:

 $[p_T]$ - mean momentum of particles in an event $\left< [p_T] \right>$ - mean over a class of events

$$k_2 = \frac{\langle c_2 \rangle}{\langle [p_T] \rangle^2}, \quad k_3 = \frac{\langle c_3 \rangle}{\langle [p_T] \rangle^3}, \quad \gamma = \frac{\langle c_3 \rangle}{\langle c_2 \rangle^{(3/2)}}$$

Skewness normalised to variance of unit value

Predictions

- Independent sources picture k_n -should evolve with multiplicity following $k_n \propto N^{n-1}$
- In UCC the $[p_T]$ is predicted to rise with centrality the sound speed in QGP c_s^2 can be obtained from that $c_s^2 = \frac{d \ln T}{d \ln s} = k \frac{d \ln [p_T]}{d \ln N_{ch}} = k \frac{\Delta p_T/[p_T]}{\Delta N_{ch}/N_{ch}}$ F.G. Gardim et al Phys.Lett.B 809 (2020) 135749
- The origin of $[p_T]$ fluctuations proposed to be correlated with b and N_{ch} (2D Gaussian model) captures evolution of moments in mid-central & UCC R. Samanta et al arxiv 2303.15323
- Within the 2D Gaussian model lower limit on b leads to skewed $[p_T]$ in UCC R. Samanta et al Phys. Rev. C 108, 024908

See R. Samanta talk yestarday

2000

2500

Moments N_{ch}^{rec} dependence

- Shown are $P([p_T], N_{ch})$, $\left<[p_T]\right>$ and moments evolution with mult.
- The $\langle [p_T] \rangle$: a turn on of radial flow in peripheral collisions plateau-like in mid. central a rapid rise in UCC
- The k_2 and k_3 : power law driven decrease with centrality, additional modifications UCC
- Xe+Xe and Pb+Pb exhibit similar features

Power-law evolution of moments

- The rise (consistent with earlier observations) in peripheral coll. attributed to the onset of thermalisation
- The scaling holds for broad range of N_{ch}^{rec} for Pb+Pb (not for Xe+Xe) and both k_2
- The drop in UCC due to $b \rightarrow 0$ (reducing initial geometric & left only intrinsic fluctuations)
- Skewness evolution qualitatively similar to k_2 in peripheral collisions
- The rise around the knee also due to truncation of b distribution (k_3 becomes non monotonic)

Moments evolution in UCC

F.G. Gargim et al Phys.Lett.B 809 (2020) 135749

R.Samanta et al arxiv 2303.15323

- A very clear rise by about 2% of $\langle [p_T] \rangle$ and a significant drop in k_2 (width)
- The ΣE_T estimator allows variation in N_{ch}^{rec} with which $[p_T]$ is correlated: larger k_2 & smaller $\left<[p_T]\right>$
- A phenomenological model (2D Gaussian model) of fluctuations predicts the the trends very well and isolates two contributions to $[p_T]$ fluctuations

Direct correlation measurement

$$egin{aligned} c_{\mathbf{s}}^2 &= rac{\mathrm{d} \, \ln \, \mathrm{T}}{\mathrm{d} \, \ln \, \mathrm{s}} = \mathbf{k} rac{\mathrm{d} \, \ln \, |\mathbf{p}_{\mathrm{T}}|}{\mathrm{d} \, \ln \, \mathbf{N}_{\mathbf{ch}}} \ &= \mathbf{k} rac{\mathbf{\Delta} \mathbf{p}_{\mathrm{T}}/[\mathbf{p}_{\mathrm{T}}]}{\mathbf{\Delta} \mathbf{N}_{\mathbf{ch}}/\mathbf{N}_{\mathbf{ch}}} \end{aligned}$$

k: dependent on spectra shape and p_T -range

- Restricted impact parameter using ΣE_T^{FCal} estimator: $\left<[p_T]\right>$ measured in slices of N_{ch}^{rec}
- Prediction: the slope of the correlation proportional to speed of sound in QGP
- Predictions by MUSIC (initial entropy destr. from TRENTO) model are in excellent agreement for Pb+Pb and Xe+Xe, unlike the HIJING

Skewness

- Significant $[p_T]$ distribution skewness variation in UCC
- The rise around the knee: $[p_T]$ distributions starts to "feel" lower limit on impact parameter
- 2D Gaussian fluctuations model provide good qualitative description of observed quantities

Summary

- ATLAS measured $v_n [p_T]$ correlations:
 - precise constraints of the Xe nucleus shape (triaxial)
 - ... and initiated new research opportunities see J. Jia talk at this Conf.
- and $[p_T]$ fluctuations:
 - variance and skewness follow independent source scenario in wide centrality range (driven by geometry)
 - "geometric" and "intrinsic" contributions evolutions in N_{ch} are different
 - departure from independent-source trend in UCC allow to disentangle them (also in non UCC)
 - Increase of $\langle [p_T] \rangle$ with N_{ch} captured by MUSIC. Further theory input needed to reliably extract c_s^2

See poster No. 578 by: **Somadutta Bhatta**Exploring the origin of [pT] fluctuations in ultra-central heavy ion collisions:
Higher order [pT] correlations in ATLAS

Backup

Comparison of moments between Pb+Pb and Xe+Xe

- Correlation between N_{ch} and $[p_T]$ in UCC

• Moments dependence on p_T limits