Observation of the $\gamma\gamma \to \tau^+\tau^-$ production in PbPb collisions with the CMS experiment

Matthew Nickel on behalf of the CMS Collaboration arXiv:2206.05192

Accepted to PRL as Editor's suggestion

Abstract

We present an observation of photon-photon production of τ lepton pairs in ultra-peripheral lead-lead collisions. The measurement is based on a data sample with an integrated luminosity of $404~\mu b^{-1}$ collected by the CMS experiment at the nucleon nucleon center-of-mass energy of 5.02 TeV. The $\gamma\gamma \to \tau^+\tau^-$ process is observed for $\tau^+\tau^-$ events with a muon and three charged hadrons in the final state. The measured fiducial cross section is $\sigma(\gamma\gamma \to \tau^+\tau^-) = 4.8 \pm 0.6 (\text{stat}) \pm 0.5 (\text{syst})~\mu b$, in agreement with leading-order QED predictions. Using $\sigma(\gamma\gamma \to \tau^+\tau^-)$, we estimated a model-dependent value of the anomalous magnetic moment of the τ lepton of $a_{\tau} = 0.001^{+0.055}_{-0.089}$ at a 68% confidence level.

Motivations

- Muon g-2 measurements had new results in the past few years that challenge the standard model predictions potentially leading to new physics.
- If the new physics is due to a massive new particle, then the tau lepton would be over 200 times more sensitive to new physics than the muon.
- Tau g-2 can be deduced using $\gamma\gamma \to \tau^+\tau^-$ cross section using ultraperipheral heavy ion collisions.

Event Selection

- Using the 2015 Pb-Pb Ion Data with a trigger requiring 1 muon, at least 1 track in the pixel detector and no HF activity in at least one side.
- The signal region consists of 1 muon and 3 charged hadrons.
- Selections are shown in the table.
- The background was estimated with the ABCD method with background regions with more charged hadrons and higher HF activity.

Signal and Background Events

- Figures below show the control plots for the leptonic τ , hadronic τ and $\tau^+\tau^-$ system.
- Control plots show great agreement between MC and Data.

Results and Conclusion

- Signal yield calculated by binned likelihood fit of $\Delta\phi$ (angular separation in transverse plane).
- Post Fit signal events: 77 ± 12
- $\sigma(\gamma\gamma \to \tau^+\tau^-) = \frac{N_{sig}}{2\epsilon L_{int}B_{\tau\mu}B_{\tau_3prong}}$
- $L=404\mu b$, $B_{\tau_{\mu}}=17.89\%$, $B_{\tau_{3prong}}=14.55\%$, $\epsilon=78.5\%$
- $\sigma(\gamma\gamma \to \tau^+\tau^-) = 4.8 \pm 0.6(\text{stat}) \pm .5(\text{sys}) \,\mu b$
- With the HL-LHC, the cross-section measurement should be able to discriminate between models the tau anomalous magnetic moment.

Acknowledgements

Thanks to our LHC and CMS colleagues for providing the facilities to make this research possible. This research was funded in part by DoE Grant DE-SC0023908.

