

The study of v₂ with a new double-differential event categorization using multiplicity and spectator neutrons in PHENIX

uark Matter 2023

Maya Shimomura for the PHENIX Collaboration, Nara Women's University

Elliptic Flow (v_2)

v₂ is the strength of the elliptic anisotropy of produced particles. A sensitive probe to the properties of the hot dense matter produced by heavy ion collisions.

Fourier expansion of the distribution of produced particle angle (ϕ) to reaction plane (Ψ) $N(\phi) = N_0 \{ 1 + 2v_1 \cos(\phi - \Psi) + 2v_2 \cos[2(\phi - \Psi)] + \dots \}$ $v_n = \langle \cos[n(\phi - \Psi)] \rangle$

 v_2 is the coefficient of the second term \rightarrow indicates ellipticity

Previous results of v_2 with N_{part} and $dN/d\eta$

 v_2 of different centrality is scaled by $N_{part}^{1/3}$. There are 45 different curves for pi/K/p of different centralities (0-50 % as 10 % step) for the different energies. In addition to the eccentricity and quark number scaling, the N_{part} 1/3 scale the centrality differences and these becomes one curve.

PHENIX [Pos WPCF20211 055] p_=0.2-1.0[GeV/c]

Higher energy (LHC-ALICE 2.76TeV) shows the same tendency of v_2 as RHIC-PHENIX 200GeV.

 v_2/ϵ as a function of dN/d η follows one curve among different collision system sizes.

- v_2 with different initial condition seems to be matched with N_{part} or multiplicity (dN/d η)

Motivation and procedure of the 2D event categorization

- QGP seems to be formed in small system collisions with relatively large multiplicity.

- A wide range of multiplicities exists at fixed N_{part} because of various effects like MPI, different N_{coll} values, etc.

Multi-parton interaction(MPI)

HOW ABOUT AuAu collisions? Is it possible to see such effects like MPI, different Ncoll which change only multiplicity but not N_{part}? How does it affect v_2 ?

gives larger v_2 . Same \leftarrow ----- N_{part} ----- Same Same ←---- Eccentricity ------ Same Small ←---- Multiplicity ------ Large ?? Small \leftarrow ----- v_2 ----- \rightarrow Large ??

PHENIX detectors **Central Arm (CNT)** - Track selection PHENIX Detector 2012 - Azimuthal angle(φ) of the tracks **Beam Beam Counter** The energy in (BBC) ZDC(ZDCe) has - Multiplicity a negative - Reaction Plane (ψ) correlation with - Z vertex multiplicity. Beam View **Zero Degree Calorimeter (ZDC)** Central Magnet - Energy of spectator neutrons (∝N_{spec}) Forward Silicon Vertex Tracker (FVTX) - Multiplicity Side View VTX & FVTX 18.5 m = 60 ftSilicon Vertex Tracker(VTX) - X,Y,Z vertex

Measurement of the multiplicity and N_{part}

Results of v₂ with 2D event categorization Au+Au at √s_{NN}=200GeV _ **PH**ENIX Red: without ZDCe event categorization Integrated ZDCe **Blue**: with ZDCe event --- 500<ZDCe<510 (7%) --- 700<ZDCe<710 (14%) ■ 300<ZDCe<310 (2%) categorization - The ZDC categorization makes 1100<ZDCe<1110 (35%) 1300<ZDCe<1310 (51%) 900<ZDCe<910 (23%) - 1700<ZDCe<1710 (91%) 1900<ZDCe<1910 (98%) — 1500<ZDCe<1510 (73%)</p> selections. 0.8 N_{tracks} / N_{tracks} 0.4 0.6

Au+Au at √s_{NN}=200GeV Image of the initial geometry **PH**ENIX N_{tracks} / max N_{tracks} 0.8 N_{tracks} / N_{tracks}

These v₂ seem to reflect initial geometry (ε) differences since the smaller N_{part} gives larger v₂, but these have the same multiplicity. → may show the sign of the MPI-like or/and Ncoll effect. --> need further study

summary

- The new event categorization is introduced in order to study the dependence of v_2 on N_{part} and the multiplicity separately. - v_2 with this new categorization are measured.
- -- It makes the slope flatter compared with no categorization at more central, but does not invert it to positive. - At same multiplicity, different ZDC classes show different v₂
 - -- Different initial geometry gives different v₂ and same multiplicity.
- -- The results might show the sign of the MPI-like or/and N_{coll} effect. --> need further study - Possibility for the new event engineering to categorize the events in detail.

We want to use the multiplicity and N_{part} info separately.

- Particles produced by collision are going into BBC(FVTX). → Multiplicity
- Spectator neutrons are going into ZDC. \rightarrow N_{part} + N_{spec} = Const.
- Categorize the events by fixed narrow ZDC bins such as 300<ZDCe<310,
- 500<ZDCe<510, 700<ZDCe<710, and so on.
- Measure the v₂ as a function of the multiplicity with fixed narrow ZDC bins RP calibration is done with these new categorizations.

