Quark Matter 2023

Contribution ID: 326 Type: Poster

Imaging the shape of atomic nuclei in high-energy nuclear collisions from STAR

Tuesday, 5 September 2023 17:30 (2h 10m)

The collective properties of nuclear structure, such as radii and deformations, leave distinct signatures in the initial and consequently final stages of relativistic heavy-ion collisions. Collisions of deformed nuclear enhance the fluctuations of harmonic flow coefficients v_n and event-wise mean transverse momentum $[p_T]$, therefore offering a viable approach to establish clear correspondences between the structure of colliding nuclei and the final state observables.

We present measurements of v_n , $[p_T]$ fluctuations as well as v_n - $[p_T]$ correlations from the STAR experiment. Significant differences are observed for $[p_T]$ fluctuations and v_n - $[p_T]$ correlations between 197 Au+ 197 Au and 238 U+ 238 U collisions, which can be quantitatively explained by the large prolate deformation of 238 U with $\beta_{2,\mathrm{U}}\sim0.28$ and $\gamma_\mathrm{U}\sim0$. Striking differences are also observed in isobar collisions of 96 Ru+ 96 Ru and 96 Zr+ 96 Zr, where ratios of many observables show significant deviations from unity and exhibit rich patterns as a function of centrality. A comparison with hydrodynamic model simulations suggests a large quadrupole deformation in Ru nucleus with $\beta_{2,\mathrm{Ru}}\sim0.16$ and a large octupole deformation in 96 Zr nucleus with $\beta_{3,\mathrm{Zr}}\sim0.2$. The non-monotonic dependence of ratios of multiplicity distribution, v_2 , and $[p_T]$ fluctuations in the mid-central collisions also requires a difference in the surface diffuseness between 96 Ru and 96 Zr in the model

calculations. Combining all these observables, we can precisely constrain the parameters associated with various nuclear deformations in isobar nuclei. Building on our pioneering demonstration of nuclear structure effects, we present a more precise quantitative extraction of the quadrupole and octupole deformation parameters in 96 Ru and 96 Zr nuclei using heavy-ion collisions.

Category

Experiment

Collaboration (if applicable)

STAR Collaboration

Primary author: ZHANG, Chunjian (Stony Brook University)

Presenter: ZHANG, Chunjian (Stony Brook University)

Session Classification: Poster Session

Track Classification: Initial state