

New constraints on 3D initial state and transport parameters of QGP using the Beam Energy Scan phase II data of STAR

Niseem Magdy

Abstract

Recent studies of flow harmonics angular correlations and flow harmonics magnitude correlations and fluctuations have indicated their weak sensitivity to final state effects in heavy-ion collisions, suggesting that they are sensitive probes for the initial state of heavy-ion collisions. These studies suggest that detailed measurements over a broad range of beam energies can provide additional constraints on the initial conditions and medium properties. In this work, we used the two-through sixparticle correlations to extract the beam energy dependence of the higher-order event-plane angular correlations, the flow fluctuations, and the flow correlations. Our new results are presented and discussed for several centrality intervals for Au+Au collisions at RHIC BES-I and BES-II energies.

Motivation

- Give the correlation strength between different flow harmonics magnitudes and directions
- Less sensitive to the medium properties, i.e., $\frac{\eta}{s}(T)$ [1]
- More sensitive to the initial state in heavy ion collisions

Beam-energy dependence for a given system:

- Initial-state ε_2 is approximately energy independent
- Viscous attenuation ($\propto \frac{\eta}{T}(T)$) is beam energy dependent

Analysis method

The cumulant method is extensively discussed in Refs [1,2,3,4]. We used k- particle cumulant methods (k > 1) to measure,

- Two, three, and four event plane angular correlations
- Four and six-particle (normalized) symmetric cumulants

Two subevents method is used to measure the two, three, and fourparticle cumulants, and the fullevent method is used for higher orders.

References

- [1] N. Magdy, PRC 107 (2023) 2, 024905
- [2] J. Jia, et al. PRC 96 034906 (2017)
- [3] A. Bilandzic et al. PRC 83, 044913 (2011)
- [4] A. Bilandzic et al. PRC 102 2 024910 (2020)

Event plane angular correlations

Comparison of the three-, four-, five- and six-particle event plan angular correlations vs. centrality

$$\langle \cos(2\psi_1 - 2\psi_2) \rangle = \langle v_1^2 v_2 \cos(2\psi_1 - 2\psi_2) \rangle / \sqrt{\langle v_1^4 v_1^2 \langle v_2^2 \rangle}$$

$$\langle \cos(4\psi_1 - 4\psi_2) \rangle = \langle v_1^4 v_2^2 \cos(4\psi_1 - 4\psi_2) \rangle / \langle v_1^4 v_2^2 \rangle$$
Similar trends were observed for $\langle \cos(k[\psi_1 - \psi_2]) \rangle$, with k=2 and 4. §

The $\langle \cos(4\psi_1 - 4\psi_2) \rangle$ is less affected by the global momentum.

- The $\langle \cos(4\psi_1 4\psi_2) \rangle$ is less affected by the global momentum conservation [1].
- Positive correlations between ψ_1 and ψ_2 observed.

- The ψ_2 - ψ_4 correlation shows similar values, however, ψ_2 - ψ_3 correlation is consistent with zero for different beam energies
- No correlations were observed between ψ_2 and ψ_3
- Except for $\rho_{2,6}$ we observe reasonable agreement with the AMPT model

The influence from the final state is less than from the initial state's [1].

Flow harmonics correlations

Comparison of the four- and six-particle (normalized) symmetric cumulants vs. centrality

Correlation between v_2 and v_4

Consistent with the expectations from mode coupling between v_2 and v_4

The weak beam energy dependence of the NSC suggests that the influence from the final state is less than that from the initial state [1].

Conclusion

Using two- and multi-particle correlations, we studied the flow harmonics direction and magnitude correlations:

- Nonvanishing $\langle \cos(4\psi_1 4\psi_2) \rangle$ which is expected to eliminate the GMC effects
- $\langle \cos(4\psi_2 4\psi_4) \rangle$ shows weak beam energy dependance.
- $\langle \cos(6\psi_2 6\psi_3) \rangle$ shows no correlations between ψ_2 and ψ_3
- Using four and six particle correlations we found (anti) correlation between v_2 and (v_3) v_4

Our multi-particle correlation measurements can be used to constrain initial state models.

40