

Characterising the initial conditions and probing the nuclear structure with multi-particle correlations techniques at the LHC

Emil Gorm Nielsen on behalf of the ALICE Collaboration

Niels Bohr Institute, University of Copenhagen

Initial state estimators

Mean transverse momentum: The mean transverse momentum, $[p_T]$, is linearly correlated with the initial energy, E_i , and inversely correlated with the size of the system R [1].

$$[p_{
m T}] \propto E_i, \quad [p_{
m T}] \propto rac{1}{R}$$

Anisotropic flow: The anisotropic flow, v_n ($n \le 3$), is proportional to the initial eccentricity [2].

$$v_n \propto \epsilon_n$$

Correlations of v_n and mean transverse momentum correlations probe the correlations of **size** and **shape** in the initial state.

Generalised Woods-Saxon profile

Multi-particle cumulants of v_n and $[p_{ m T}]$

Multi-particle cumulants, $C(v_n^m,[p_{\mathrm{T}}^k)$ between v_n^m and $[p_{\mathrm{T}}^{(k)}]$.

Pearson correlation coefficient

$$\rho(v_n^m, [p_{\mathrm{T}}^{(k)}]) = \frac{C(v_n^m, [p_{\mathrm{T}}^{(k)}])}{\sqrt{\mathrm{var}(v_n^m)} \sqrt{\mathrm{var}([p_{\mathrm{T}}^{(k)}])}}$$

Normalised cumulant

$$ext{NC}(v_n^m, [p_{ ext{T}}^{(k)}]) = rac{C(v_n^m, [p_{ ext{T}}^{(k)}])}{\langle v_n^m
angle \langle [p_{ ext{T}}^{(k)}]
angle}$$

Three-subevent method: removes auto-correlations and non-flow.

- v_n^m : two-subevent method with pseudorapidity gap $|\Delta \eta| > 0.8$.
- $[p_{\mathrm{T}}^{(k)}]$: midrapidity $|\eta| < 0.4$.

Probing the nuclear structure

ALICE data suggests a triaxial structure of ¹²⁹Xe.

Extending to higher orders in v_n

- Negative correlation between v_2^4 and $[p_{
 m T}]$ in Pb–Pb collisions.
- Consistent with zero in Xe-Xe collisions.

ALI-PREL-546906

Extending to higher orders in $p_{ m T}$

- Negative or positive correlation between v_2^2 and $[p_{\rm T}^{(2)}]$ in Pb-Pb \to depends on lower $p_{\rm T}$ cut.
- Measurements in Xe-Xe fluctuate around zero.

ALI-PREL-546910

• The full understanding of the higher-order cumulants awaits input from state-of-the-art theoretical models with different initial state structures [3].

Summary

- Nuclear deformation: The ratio of $\rho(v_2^2,[p_{\mathrm{T}}])$ reveals a triaxial structure of $^{129}\mathrm{Xe}.$
- First measurements of higher-order correlations between anisotropic flow and transverse momentum.
- Nucleon width: $\rho(v_n^2,[p_{\rm T}])$ highly sensitive to nucleon width ω . Higher-order may provide crucial constraints for Bayesian parameter estimation for heavy-ion models.

References

- [1] Giuliano Giacalone, Fernando G. Gardim, Jacquelyn Noronha-Hostler, and Jean-Yves Ollitrault. *Phys. Rev. C*, 103(2):024909, 2021.
- [2] H. Niemi, G. S. Denicol, H. Holopainen, and P. Huovinen. *Phys. Rev.*, C87(5):054901, 2013.
- [3] Giuliano Giacalone, Emil Gorm Nielsen, and You Zhou. *In preparation*.