Production of light flavor particles as a function of the Underlying Event activity with ALICE

Omar Vazquez Rueda, for the ALICE Collaboration

University of Houston

Introduction

High-multiplicity pp and p-Pb collisions show signatures of collective phenomena, as well as strangeness enhancement.

To pin down the origins of these effects, particle production is studied as a function of the Underlying Event (UE) activity [1], namely in the "transverse" region (perpendicular to the direction of the event's leading particle).

Figure 1: Definition of the topological regions in the azimuthal angle plane with respect to the direction of the leading particle (longest upright arrow). Figure taken from [2].

The UE activity is quantified using the relative transverse activity classifier, $R_{\rm T} = N_{\rm T}/\langle N_{\rm T} \rangle$ [1], where $N_{\rm T}$ is the per event chargedparticle multiplicity in the transverse region and $\langle N_{\rm T} \rangle$ is the average value over all the analyzed events.

- $ightharpoonup R_{\rm T}$ separates events with "higher-than-average" UE from "lower-than-average".
- Investigate whether events with $R_{\rm T} \to 0$ (dominated by the jet activity) exhibit particle ratios and spectra consistent with fragmentation models tuned to e^+e^- data and whether events with $R_{\rm T} \to \infty$ exhibit any clear signs of collective phenomena.
- ► In the context of MPI models, this type of differential studies allow to measure event properties in an MPI-suppressed (-enhanced) environment.

Analysis procedure

This study presents the production of π , K, and p measured in pp collisions at $\sqrt{s}=13~{
m TeV}$ in different topological regions as a function of $R_{\rm T}$.

- ▶ Uses events with trigger charged tracks in $|\eta| < 0.8$ and $5 \leq p_{\mathrm{T}}^{\mathrm{leading}} < 40 \; \mathrm{GeV}/c.$
- \blacktriangleright The π , K, and p yield is measured in topological regions, and as function of $R_{\rm T}$. Particle identification is performed exploiting the TPC and the TOF detectors.
- ► The $d^2N(R_T)/dydp_T$ distributions are unfolded using an iterative Bayesian unfolding method. Moreover, the p_T distributions include a Feed-Down correction.

 R_{T} N_{T} 0 - 0.50 - 3 $0.5 - 1.5 \ 4 - 11$ $1.5 - 2.5 \ 12 - 18$ $2.5 - 5 \quad 19 - 30$ $0 - 5 \quad 0 - 30$

ALI-PUB-545299 Figure 2: Unfolded R_T probability distribution and model predictions in the transverse region in events with a leading charged particle. Figure taken from [2].

Table 1: Relation between $R_{\rm T}$ classes and $N_{\rm T}$ intervals.

Results

Toward and away regions:

- \blacktriangleright Particle production in the $0 \le R_{\rm T} < 0.5$ interval is dominated by the leading and away-side jet fragmentation.
- ▶ Depletion (enhancement) of particles for $p_{\rm T} \lesssim 2~{
 m GeV}/c$ ($p_{\rm T} \approx 2.5~{
 m GeV}/c$) with increasing UE activity. Possibly attributed to radial flow.
- ▶ The spectra soften with increasing UE activity for $p_T \gtrsim 2~{\rm GeV}/c$. The UE dominates at high $R_{\rm T}$

Transverse region:

► The spectra harden with increasing UE activity. Possibly due to a selection bias.

ALI-PUB-545311

Figure 3: p_T spectra (top panels) of protons as a function of R_T and ratios to the R_T -integrated spectrum (bottom panels). Figure taken from [2].

- \blacktriangleright The K/π and p/π ratios in the toward region increase with increasing UE activity for $p_{\rm T} \gtrsim 1~{
 m GeV}/c$. This might be due to a gradual increase of radial flow.
- > PYTHIA 8 can only describe qualitatively the particle ratios in the toward and away regions for $0 \le R_{\rm T} < 0.5$. This is expected since it is tuned to reproduce jet-like ${\rm e^+e^-}$ measurements.
- PYTHIA 8 Monash predicts almost no evolution when the UE increases.

Figure 4: $p_{\rm T}$ -differential particle ratios in the extremes of $R_{\rm T}$ and predictions from the PYTHIA model.

References

- T. Martin, P. Skands, and S. Farrington, "Probing Collective Effects in Hadronisation with the Extremes of the Underlying Event," Eur. Phys. J. C 76 no. 5, (2016) 299, arXiv:1603.05298 [hep-ph].
- **ALICE** Collaboration, S. Acharya et al., "Production of pions, kaons, and protons as a function of the relative transverse activity classifier in pp collisions at $\sqrt{s}=13$ TeV," JHEP **06** (2023) 027, arXiv:2301.10120 [nucl-ex].

Acknowledgment

O. Vazquez acknowledges the support from UH for the postdoctoral fellowship.