

Flash Talk:

Current status and future prospects of measuring hadronic interactions in pp collisions at 13.6 TeV with ALICE

Anton Riedel

on behalf of the ALICE collaboration

Technical University of Munich

Quark Matter 2023, Houston, Texas

Accessing hadronic interactions with femtoscopy

$$C(k^*) = \mathcal{N} \frac{N_{\mathsf{SE}}(k^*)}{N_{\mathsf{ME}}(k^*)} = \int S(r^*) |\Psi(k^*)|^2 \mathrm{d}^3 r^* \xrightarrow{k^* \to \infty} 1$$

Workflow for accessing interaction:

- Measure correlation function C(k*)
- Fix source S(r*)
- Study interaction Ψ(k*)

Accessing hadronic interactions with femtoscopy

$$C(k^*) = \mathcal{N} \frac{N_{\text{SE}}(k^*)}{N_{\text{ME}}(k^*)} = \int S(r^*) |\Psi(k^*)|^2 d^3 r^* \xrightarrow{k^* \to \infty} 1$$

Workflow for fixing the source:

- Measure correlation function C(k*)
- Fix interaction Ψ(k*)
 Study source S(r*)

Common baryonic source in pp collisions

How to constrain the source size:

- Measure correlation function C(k*)
- Fix interactions Ψ(k*) -> p-p & p-Λ
- Take short-lived resonances into account
- Extract source as a function of m_T

Current status: Differential measurement of p-p correlations in Run 3

Future of femtoscopy in Run3:

- Measurement of the p-p and of p- Λ in similar multiplicity class to Run 2 to benchmark Run 3 results
- Extend the common source model with multiplicity scaling of the source

=> Source constrained for future femtoscopic measurements in Run 3 with ALICE