Two-particle femtoscopy at the HADES experiment

Mateusz Grunwald for the HADES collaboration

Warsaw University of Technology

NATIONAL SCIENCE CENTRE

Outline

1) Motivation

- Early stage measurements
- Hyperon puzzle
- Multi-nucleon system
- 2) Femtoscopy technique
- 3) HADES experiment
- 4) Results:
 - Photon photon
 - Proton lambda
 - Proton cluster

5) Summary

Motivation – EM probes

J. Stachel. K. Reygers, QGP physics SS2015 6., "Space-time evolution of the QGP"

Máté Csanád "Quantumstatistical correlations and femtoscopy in high energy physics", Eötvös University, March 2021

QUARK MATTER 2023, HOUSTON, TEXAS

Motivation – hadron probes

- Proton– lambda:
 - Investigate Y-N interaction -> Relevant for EoS of neutron star matter
 - Existence of hyperons softens EoS --> towards solving hyperon puzzle

- Proton-cluster:
 - Studies of excited/bound states
 - From 2 nucleons to many nucleons system, relevant reference for neutron star studies

Femtoscopy

Goal - measure source's space-time characteristics and interactions between particles through low relative momentum correlations. Theory

Single particle emission function: $P(\vec{p}) = \int S(\vec{x}, \vec{p}) d^3x$ $\leftarrow CF(\vec{p}_1, \vec{p}_2) = \frac{P(\vec{p}_1, \vec{p}_2)}{P(\vec{p}_1)P(\vec{p}_2)}$ Two particle emission function: $P(\vec{p}_1, \vec{p}_2) = \int S(\vec{x}_1, \vec{p}_1; \vec{x}_2, \vec{p}_2) |\Psi(\vec{x}_1, \vec{p}_1; \vec{x}_2, \vec{p}_2)|^2 d^3x_1 d^3x_2$

Experiment

 \vec{x} : particle's position \vec{p} : particle's momentum $\Psi(\vec{x}_1, \vec{p}_1; \vec{x}_2, \vec{p}_2)$: two particle's wave function $S(\vec{x}, \vec{p})$: source function $q = |\vec{p}_1 - \vec{p}_2|$: momentum difference $N_{same}(q)$: same event distribution $N_{mixed}(q)$: mixed event distribution

Correlation function:

$$CF(q) = \frac{N_{same}(q)}{N_{mixed}(q)}$$

Femtoscopy

QUARK MATTER 2023, HOUSTON, TEXAS

MATEUSZ GRUNWALD

06.09.2023

HADES experiment

- High Acceptance Di-Electron Spectrometer
- Fixed target, few (1-2) GeV beam kinetic energy
- Measurement of dilepton pairs from vector mesons (ω , ϕ , ρ)
- High angular acceptance ($0^{\circ} < \phi < 360^{\circ}$, $18^{\circ} < \theta < 85^{\circ}$) split into 6 sectors
- High e[±] reconstruction efficiency (RICH, ECAL) and π^{\pm} /p separation (TOF)

MATEUSZ GRUNWALD | QUARK MATTER 2023, HOUSTON, TEXAS | 06.09.2023

Photons at HADES

statistical uncertainties only

QUARK MATTER 2023, HOUSTON, TEXAS

MATEUSZ GRUNWALD

QUARK MATTER 2023, HOUSTON, TEXAS

06.09.2023

statistical uncertainti

QUARK MATTER 2023, HOUSTON, TEXAS

06.09.2023

MATEUSZ GRUNWALD

QUARK MATTER 2023, HOUSTON, TEXAS

06.09.2023

MATEUSZ GRUNWALD

QUARK MATTER 2023, HOUSTON, TEXAS

06.09.2023

Proton-lambda correlations

MATEUSZ GRUNWALD | QUARK MATTER 2023, HOUSTON, TEXAS | 06.09.2023

Weak decay reconstruction

QUARK MATTER 2023, HOUSTON, TEXAS

Proton-lambda correlation functions, Ag+Ag at 2.55 GeV

Proton-lambda correlation functions, Ag+Ag at 2.55 GeV

06.09.2023

Proton-lambda correlation functions, Ag+Ag at 2.55 GeV

Proton-lambda correlation functions,

Ag+Ag at 2.55 GeV

Proton-lambda correlation functions,

Ag+Ag at 2.55 GeV

: framework Cumac Corrfit •• HAL

priv

MATEUSZ GRUNWALD

06.09.2023

Cumac Corrfit HAL

MATEUSZ GRUNWALD | QUARK MATTER 2023, HOUSTON, TEXAS | 06.09.2023

Proton-cluster correlation functions, Ag+Ag at 2.55 GeV

Proton-cluster correlation functions, Ag+Ag at 2.55 GeV

Proton-cluster correlation functions, Ag+Ag at 2.55 GeV

Proton - ³He and proton - triton comparison

- Similar masses
- Same baryon number
- Decay sources ${}_{2}^{4}He^{*} \rightarrow t + p$ ${}^{4}_{3}Li \rightarrow {}^{3}_{2}He + p$

• $J^{\pi} = 2$ -, $\Gamma = 6.0$ MeV,

 $\Gamma_{\rm p}/\Gamma = 1$, k^{*}₀ \approx 72 MeV/c

- Different charges -> different strength of coulomb interactions
- Different stability

FOPI Collaboration: Eur. Phys. J. A 6, 185–195 (1999)

Check Maria Stefaniak poster (n.o. 682. "Proton-cluster femtoscopy at the HADES experiment")

Effect of (possible) resonances might be visible

MATEUSZ GRUNWALD

QUARK MATTER 2023, HOUSTON, TEXAS

06.09.2023

Summary

- Photon-photon correlation exhibits an enhancement at low Q_{inv}. Additional, unknown background contribution was observed. Complementary study with photons reconstructed via conversion method is ongoing.
- Strong interaction parameters have been determined from proton-lambda correlations. Estimated source radius is consistent with proton-proton correlation.
- Proton-proton and proton-deuteron correlation functions show good match with theory. Signatures from ⁴/₂He^{*} and ⁴/₃Li decays of were observed.
- The same analyses will be performed new HADES data from p-p at $\sqrt{s_{NN}} = 3.46$ GeV.

Backup – photon-photon – min bias

Backup – photon-photon – alternative fits

Backup – photon-photon – fit for ALICE data

Backup – proton-lambda – Armanteros-Podolansky plot

SPS : Pb+Pb @ 17.3 TeV and STAR : Au+Au @ 200 GeV

