New measurements of jet v₂ properties with ALICE

Takuya Kumaoka for the ALICE collaboration RIKEN, University of Tsukuba, University Grenoble Alpes

1. Introduciton

Physcs Motivation: Investigate quark-gluon plasma (QGP) properties and in-medium parton energy loss

- → Use hard probes (heavy-flavor quarks, jets)
- The production cross section is calculable by pQCD
- High-energy partons are produced in the initial collision stages
- → As a parton traverses the QGP, it interacts with medium constituents and loses energy.

No direct access to partonic energy loss and medium properties.

- → Still not clarified the parton quenching mechanism and related parameters.
- \hat{q} : transport coefficient
- n: power for path length

Jet suppression mechanism **Energy loss**

 $\Delta E \propto \hat{q} L^n$ \hat{q} : transport coefficient L: path length in QGP

out-of-plane

QGP/

[V0A (2.8 < η < 5.1) and V0C (-3.7 < η < - 1.7)]

- Particle identification (PID) via dE/dx

Out-of-plane

 $(\pi/4 < \phi < 3\pi/4, 5\pi/4 < \phi < 7\pi/4)$

Event plane

In-plane ($0 < \phi < \pi/4$,

 $3\pi/4 < \phi < 5\pi/4$,

 $7\pi/4 < \phi < 2\pi$

Reaction area (QGP)

Heavy Ion

→ Use azimuthal anisotropy of jet yield for event shape Elliptic flow coefficient (v₂) $v_2^{\rm jet} \propto \frac{N_{\rm in} - N_{\rm out}}{N_{\rm in} + N_{\rm out}}$

New points of this study for Energy loss

 $N_{\rm in}$, $N_{
m out}$:Jet yield - Use new central collision energy data set at in-plane and at for charged jet v_2

- It has both unique and overlapping p_T region for other experiments.

4. Jet Reconstruction

Jet Reconstruction algorithm :anti- $k_{\rm T}$ of Fast jet package[1]

- Clustering track p_T to minimize $d_{ij} = \min(k_{ti}^{-2}, k_{tj}^{-2}) \Delta R_{ij}^2/R^2$

Jet reconstruction setting

- Charged jet
- Jet resolution parameter (R):0.2
- Leading track p_{T} cut :5 GeV/c

Background Estimation

- In Heavy-ion collisions, a huge number of particles are produced.
- → Signal jets are reconstructed with the background particles.
- \rightarrow Use fitting function $(\rho_{\rm ch}(\phi))$ assuming background p_T distribution for azimuthal angle except for leading jet η area.

Background estiamtion process

$$\rho_{\mathsf{ch}}(\pmb{\varphi}) = \rho_0 \times \left(1 + 2\left\{v_2^{\mathsf{obs}}\cos(2[\pmb{\varphi} - \Psi_{\mathsf{EP},2}]) + v_3^{\mathsf{obs}}\cos(3[\pmb{\varphi} - \Psi_{\mathsf{EP},3}])\right\}\right)$$

Unfolding

- The measured jet p_{T} distribution is affected by the background fluctuations and the finite resolution / efficiency of the detector
- \rightarrow Correct p_T distribution distortions

Setting

- Truth level jet: PYTHIA8
- Detector level jet: Embedding
- Number of iteration : 6
- Unfolding method : Bayes

Embedding and Unfolding

2. ALICE Detector and Data in Run 2

- Trigger Centrality determination

TPC ($|\eta| < 0.9$)

- Charged-particle tracking

ITS $(|\eta| < 0.9)$

- Charged-particle tracking

- Event plane estimation

- Primary/secondary vertexing

- Pb—Pb collisions: $\sqrt{s_{\rm NN}}$ = 5.02 TeV (30-50%: $\mathcal{L}_{\rm int}$ ~ 56 ub⁻¹)

5. Inclusive Charged Jet v_2 in Pb-Pb Collisions (30-50%)

- At low p_T , the charged jet v_2 show evidently positive value. As it becomes high p_{T} , the charged jet v_{2} gets close to zero.
- The charged jet v_2 of this measurement is consistent with ATLAS result within uncertainty around 70-110 GeV/c.

 $N_{\rm in}$, $N_{\rm out}$: jet yield at inplane and at out-of-plane

3. Event Plane Angle Estimation

Event Plane Angle ($\Psi_{\mathrm{EP},n}$)

- Classify jets for in-plane and out-of-plane.
- Estimate background p_T depending azimuthal angle.
- Used for event plane angle resolution($Res\{\Psi_{\mathrm{EP},2}^{\mathrm{meas}}\}$).

 $\Psi_{\text{EP},n} = \frac{1}{n} \arctan \frac{Q_{n,y}}{Q_{n,x}}$

Flow vector from detector measurement

 $Q_{n,x} = \sum_{i} \omega_{i} \cos n\phi_{i}$ $Q_{n,v} = \sum_{i} \omega_{i} \sin n\phi_{i}$

 $2\pi \phi$ Event plane estimation ALI-PREL-557234

 $(\phi_i : \text{Track angle}, \omega_i : \text{multiplicity weight, n: Fourier order})$

Calibration Qn vector

Reference

- Gain calibration: Calibrate detector cell gain for azimuthal angle.
- Cetrality calibration : Calibrate *Qn* vector for centrality.

Event Plane Angle resolution

$$Res\{\Psi_{\text{EP,2}}^{\text{meas}}\} = \left\langle \cos\left(2\left[\Psi_{\text{EP,2}}^{\text{VoM}} - \Psi_{\text{EP,2}}\right]\right)\right\rangle$$

$$= \sqrt{\frac{\left\langle \cos\left(2\left[\Psi_{\text{EP,2}}^{\text{VoM}} - \Psi_{\text{EP,2}}^{\text{TPC},\,\eta < 0}\right]\right)\right\rangle \left\langle \cos\left(2\left[\Psi_{\text{EP,2}}^{\text{VoM}} - \Psi_{\text{EP,2}}^{\text{TPC},\,\eta > 0}\right]\right)\right\rangle}{\left\langle \cos\left(2\left[\Psi_{\text{EP,2}}^{\text{TPC},\,\eta < 0} - \Psi_{\text{EP,2}}^{\text{TPC},\,\eta > 0}\right]\right)\right\rangle}}$$

6. Summary and Outlook

Summary

- To clarify jet quenching mechanism and estimate its parameters, charged jet v_2 measured using the data of Pb—Pb collision $\sqrt{s_{\rm NN}}$ = 5.02 TeV.
- The charged jet v_2 in centrality 30-50% show positive value and it is consistent with other experiments.

Outlook

- Measure other centrality charged jet v_2 .
- Compare with some model simulations in JETSCAPE.
- → Constrain models and determine quenching parameter.
- [1] M. Cacciari, G. P. Salam, and G. Soyez, Eur. Phys. J. C 72 (2012), arXiv:1111.6097 [hep-ph]
- [2] *Physics Letters B*, Vol. 753, pp. 511–525, 2016.
- [3] *Phys. Rev. C*, Vol. 105, p. 064903, Jun 2022.