New measurements of jet v_{2} properties with ALICE

Takuya Kumaoka for the ALICE collaboration
RIKEN, University of Tsukuba, University Grenoble Alpes

4. Jet Reconstruction

Jet Reconstruction algorithm :anti- k_{T} of Fast jet package[1] - Clustering track p_{T} to minimize $d_{i j}=\min \left(k_{t i}^{-2}, k_{t j}^{-2}\right) \Delta R_{i j}^{2} / R^{2}$

Jet reconstruction setting

- Charged jet
- Jet resolution parameter (R):0.2
- Leading track p_{T} cut :5 GeV/c

Background Estimation

- In Heavy-ion collisions, a huge number of particles are produced.
\rightarrow Signal jets are reconstructed with the background particles.
\rightarrow Use fitting function ($\rho_{\mathrm{ch}}(\phi)$) assuming

Background estiamtion process
background p_{T} distribution for azimuthal angle except for leading jet η area
$\rho_{\mathrm{ch}}(\varphi)=\rho_{0} \times\left(1+2\left\{v_{2}^{\mathrm{obs}} \cos \left(2\left[\varphi-\Psi_{\mathrm{EP}, 2]}\right)+v_{3}^{\mathrm{obs}} \cos \left(3\left[\varphi-\Psi_{\mathrm{EP}, 3]}\right)\right\}\right)\right.\right.$

Unfolding

- The measured jet p_{T} distribution is affected by the background fluctuations and the finite resolution / efficiency of the detector
\rightarrow Correct p_{T} distribution distortions

Setting

- Truth level jet: PYTHIA8
- Detector level jet: Embedding

Number of iteration : 6
\rightarrow Use azimuthal anisotropy of jet yield for event shape Elliptic flow coefficient (v_{2})
New points of this study for Energy loss - Use new central collision energy data se for charged jet v_{2}

- It has both unique and overlapping p_{T} region for other experiments.

2. ALICE Detector and Data in Run 2

ALICE detector overview

ITS (| $\eta \mid<0.9)$

- Charged-particle tracking - Primary/secondary vertexing Unfolding method : Bayes

5. Inclusive Charged Jet $\boldsymbol{v}_{\mathbf{2}}$ in $\mathrm{Pb}-\mathrm{Pb}$ Collisions (30-50\%)

At low p_{T}, the charged jet v_{2} show evidently positive value. As it becomes high p_{T}, the charged jet v_{2} gets close to zero.
The charged jet v_{2} of this measurement is consistent with ATLAS result within uncertainty around $70-110 \mathrm{GeV} / c$.
\rightarrow Constrain models and determine quenching parameter.

- $\mathrm{Pb}-\mathrm{Pb}$ collisions: $\sqrt{S_{\mathrm{NN}}}=5.02 \mathrm{TeV}\left(30-50 \%: \mathcal{L}_{\mathrm{int}} \sim 56 \mathrm{ub}^{-1}\right)$

3. Event Plane Angle Estimation

Event Plane Angle ($\Psi_{\mathrm{EP}, n}$)

- Classify jets for in-plane and out-of-plane.

Estimate background p_{T} depending azimuthal angle. - Used for event plane angle resolution $\left(\operatorname{Res}\left\{\Psi_{\mathrm{EP}, 2}^{\text {meas }}\right\}\right)$.
$\Psi_{\mathrm{EP}, n}=\frac{1}{n} \arctan \frac{Q_{n, y}}{Q_{n, x}}$
Flow vector from detector measurement

$$
\begin{aligned}
& Q_{n, x}=\sum_{i} \omega_{i} \cos n \phi_{i} \\
& Q_{n, y}=\sum_{i} \omega_{i} \sin n \phi_{i}
\end{aligned}
$$

Event plane estimation

6. Summary and Outlook

Summary

- To clarify jet quenching mechanism and estimate its parameters, charged jet v_{2} measured using the data of $\mathrm{Pb}-\mathrm{Pb}$ collision $\sqrt{S_{\mathrm{NN}}}=5.02 \mathrm{TeV}$.
- The charged jet v_{2} in centrality $30-50 \%$ show positive value and it is consistent with other experiments.

Outlook

- Measure other centrality charged jet v_{2}

Compare with some model simulations in JETSCAPE.

Event Plane Angle resolution

$\operatorname{Res}\left\{\Psi_{\mathrm{EP}, 2}^{\text {meas }}\right\}=\left\langle\cos \left(2\left[\Psi_{\mathrm{EP}, 2}^{\mathrm{VOM}}-\Psi_{\mathrm{EP}, 2}\right]\right)\right\rangle$

$$
=\sqrt{\frac{\left(\cos \left(2\left[\Psi_{\mathrm{EP}, 2}^{\mathrm{VOM}}-\Psi_{\mathrm{EP}, 2}^{\mathrm{TPC}, \eta<0}\right]\right)\left\langle\cos \left(2\left[\Psi_{\mathrm{EP}, 2}^{\mathrm{VPM}}-\Psi_{\mathrm{EE}, 2}^{\mathrm{TP}, \eta>0}\right]\right)\right\rangle\right.}{\left\langle\cos \left(2\left[\Psi_{\mathrm{EP}, 2}^{\mathrm{TPC}, \eta<0}-\Psi_{\mathrm{EP}, 2}^{\mathrm{TP}, \eta>0}\right]\right)\right\rangle}}
$$

Calibration Qn vector

- Gain calibration :Calibrate detector cell gain for azimuthal angle.
- Cetrality calibration :Calibrate Qn vector for centrality.

Reference

