Quark Matter 2023 Houston, Texas, USA

Search for anomalous chiral effects in heavy-ion collisions with ALICE

Chunzheng Wang (for the ALICE Collaboration)

Fudan University, Sept 5, 2023

Anomalous chiral effects in the heavy-ion collisions

Credit to Derek B. Leinweber

Chiral symmetry restoration

Current parallel to the field

Extremely strong magnetic/vortical field

 $\mu_{5} \neq 0$

Chirality imbalance

 $\mu_5 \neq 0$

D. Kharzeev, PLB 633, 260 (2006); D. Kharzeev et al., NPA 803, 227 (2008);

K. Fukushima et al., PRD 78, 074033 (2008);

D. Son et al., PRL 103, 191601 (2009); Y. Burnier et al., PRL 107, 052303 (2011);
D. Kharzeev, PRL 106, 062301 (2011); D. Kharzeev et al., PRD 83, 085007 (2011);
D. Kharzeev, PPNP 88, 1 (2016); D. Kharzeev et al., NRP 3, 1 (2021).

Observables of CME/CVE

CME: α , $\beta \rightarrow$ charged hadrons; CVE: α , $\beta \rightarrow$ baryons

ĊF

Observables of CMW

Charge asymmetry $A = (N^+ - N^-)/(N^+ + N^-)$

All CMW Signal?

4

Signal and background

• Flow channels the initial charge separation (either signal or background) to the final state.

S. Schlichting et al., PRC 83, 014913 (2011); A. Bzdak et al., PLB 726 239243 (2013) P. Christakoglou et al., EPJC 81, 717 (2021); W. Wu et al., PRC 107, L031902 (2023)

Event shape engineering (ESE)

$$q_2 = Q_2/\sqrt{M} \propto v_2$$

- Select events in different q_2 intervals
- Control the bkg. by controlling v_2 event by event.

J. Schukraft et al., PLB 719, 394 (2013); F. Wen et al., CPC 42, 014001 (2018) R. Milton et al., PRC 104, 064906 (2021); C. Wang et al., PLB 820, 136580 (2021)

ALICE, PLB 777, 151 (2018); CMS, PRC 100, 064908 (2019) J. Zhao et al., PPNP 107, 200 (2019); ALICE, JHEP 2020, 160 (2020)

Overview of this report

1.Chiral Magnetic Effect (CME)

Extract the CME fraction by ESE

2.Chiral Magnetic Wave (CMW)

Extract the CMW fraction by ESE

3.Chiral Vortical Effect (CVE)

Search for the CVE by the γ and δ correlator

in the Pb–Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV with ALICE

ALICE experiment

ALICE for anomalous chiral effects

- High collision energies (TeV)
- \rightarrow different μ and B/ω field, with respect to STAR experiment
- High multiplicity
- \rightarrow small fluctuations
- Good performance of forward detectors
- \rightarrow good for techniques such as ESE
- Extensive particle identification (PID) with TOF/TPC
- \rightarrow appropriate for CVE and PID CME

ALICE, J. Inst. 3, S08002 (2008) ALICE, J. Inst. 8, P10016 (2013) ALICE, MPA 29, 1430044 (2014)

- q_2 for ESE is measured by V0C with V0A as the event plane estimator.
- $\Delta \gamma$ is positive for all centrality classes and decreases with centrality and v_2 .

- q_2 for ESE is measured by V0C with V0A as the event plane estimator.
- $\Delta \gamma$ is positive for all centrality classes and decreases with centrality and v_2 .
- $\Delta \gamma$ approximately scales with v_2 and multiplicity \rightarrow large background contribution.

- Perform a MC simulation to evaluate the **dependence of the CME signal on v**₂.
- $\langle |B|^2 \cos(2(\Psi_B \Psi_2)) \rangle$ represents the expected contribution of the CME to $\Delta \gamma$.
- Fit $\Delta \gamma$ and $\langle |B|^2 \cos(2(\Psi_B \Psi_2)) \rangle$ with a linear function to disentangle the CME signal from the background.

$$f(v_2) = p_0 \left[1 + p_1 \frac{v_2 - \langle v_2 \rangle}{\langle v_2 \rangle} \right].$$

[CE

• Fit $\Delta \gamma$ and $\langle |B|^2 \cos(2(\Psi_B - \Psi_2)) \rangle$ with a linear function to disentangle the CME signal from the background.

f(

$$(v_2) = p_0 \left[1 + p_1 \frac{v_2 - \langle v_2 \rangle}{\langle v_2 \rangle} \right].$$

• Extract the CME fraction f_{CME} by $p_{1,\text{data}} = f_{\text{CME}}p_{1,\text{MC}} + (1 - f_{\text{CME}})$

2.76 TeV, 10–50% centrality

 $f_{\text{CME}}(\text{Glauber}) = 0.102 \pm 0.129, 33\% \text{ at }95\% \text{ C.L.}$ $f_{\text{CME}}(\text{KLN}) = 0.076 \pm 0.104, 26\% \text{ at }95\% \text{ C.L.}$ $f_{\text{CME}}(\text{EKRT}) = 0.084 \pm 0.114$ 29% 95% C.L.

5.02 TeV, 5–60% centrality

TRENTO: J. Moreland et al., PRC 92, 011901 (2015)

KLN: H. Drescher et al., PRC 76, 041903 (2007)

 $f_{\text{CME}}(\text{Glauber}) = 0.0276 \pm 0.0213, 6.4\% \text{ at 95\% C.L.}$ $f_{\text{CME}}(\text{T}_{\text{R}}\text{ENTo}) = 0.0245 \pm 0.0179, 5.5\% \text{ at 95\% C.L.}$

The upper limit has been further constrained.

• Integral covariance (Δ IC) approximately scales with $v_2 \rightarrow$ large background contribution. C. Wang et al., PLB 820, 136580 (2021)

- CMW fraction extracted by $f_{\text{CMW}} = b/[a\langle v_2 \rangle + b]$, where a, b taken from the linear fitting $\Delta \text{IC}(v_2) = av_2 + b$.
- CMW fraction for 10–60% centrality: $f_{\text{CMW}} = 0.081 \pm 0.055$, 26% at 95% C.L., 38% at 99.7% C.L.
- A universal LCC background for CME+CMW is established by W. Wu et al., PRC 107, L031902 (2023).

Search for the CVE

- Choosing neutral baryon $\Lambda(\bar{\Lambda})$ to avoid ambiguity from CME
- Λ reconstructed by $\Lambda \rightarrow \pi p$
- γ, δ extracted by invariant mass method

N. Borghini et al., PRC 70, 064905 (2004)

- Significant δ and γ separation of Λ -p, approximately 10 times larger than h-h (CME).
- Separation of $\Lambda\text{--}h$ is near zero.
- $\Delta\delta$, $\Delta\gamma$ of Λ -p increasing with centrality.

Comparison with AMPT model

- The AMPT model, which has no CVE but partially contains the local baryon conservation (LBC), can reproduce δ , $\Delta\delta$ correlators, however, fails for $\Delta\gamma$ correlators
- Urgent need for advanced models such as AVFD+LBC...

Observables in different kinematics regions

- Larger $\Sigma p_{\rm T}$ leads to larger $\Delta\delta$ and $\Delta\gamma$
- Larger η gap leads to small $\Delta\delta$ but moderate $\Delta\gamma$
- Helpful to understand subtle mechanism and establish the theoretical interpretation

Anomalous chiral effects (CME, CMW, CVE) are studied in Pb–Pb $\sqrt{s_{\rm NN}}$ = 5.02 TeV collisions with ALICE

- Event shape engineering has been successfully applied to extract CME/CMW signals with ALICE. The upper limit of CME is further constrained.
 - Contribution from CME/CMW signal is close to zero within the error at TeV scale.
- First measurements of CVE with ALICE. δ and γ correlators of Λ –p show a non-trivial behavior. They also show hierarchy in different kinematics regions.
 - Theoretical inputs are highly desired to disentangle the CVE signal and the background.

Thank you for your attention!

Back Up

Event shape engineering

• Way to disentangle the v_2 related background and signal in CME/CMW measurement.

Observables in different kinematics regions

