

Elliptic and triangular flow of light nuclei in Au+Au collisions in the BES-II energies using the STAR detector

Rishabh Sharma
(for the STAR Collaboration)
Indian Institute of Science Education and Research (IISER) Tirupati

September 5, 2023

Supported in part by:

Outline

- Motivation
- > The STAR experiment
- > Analysis details
- > Results
 - Elliptic flow of light nuclei
 - Triangular flow of light nuclei
- Summary and Outlook

Motivation

- **Coalescence model**: Light nuclei are formed in the later stages of heavy-ion collision by the coalescence of protons and neutrons
- Recent measurements indicate **coalescence model** can reproduce light nuclei yields/ratios
- \sim v₂/A of light nuclei was observed to be close to v₂ of protons for p_T/A < 1.5 GeV/c in BES-I data \rightarrow Supporting coalescence model
- > Higher statistics dataset in BES-II program will allow us to revisit and better understand the production mechanism of light nuclei

Motivation

ALICE, PRC 102, 055203 (2020)

$$v_{2(3),d}(p_{\rm T}) = \frac{2v_{2(3),p}(p_{\rm T}/2)}{1 + 2v_{2(3),p}^2(p_{\rm T}/2)}$$

- > At LHC energies:
 - o v₂ was observed to deviate from mass number scaling by 20-30%
 - v₃ was observed to exhibit mass number scaling although with large uncertainties
- > High statistics data in BES-II energies enables us to study mass number scaling of higher order flow harmonics at STAR energies

The STAR Experiment

- Particle identification is performed using
 - dE/dx information from Time Projection Chamber (TPC)
 - m^2 information from Time of Flight (TOF)
- BES-II upgrades:
 - **iTPC**: Large pseudorapidity coverage ($|\eta| < 1.5$)
 - **Endcap Time of Flight (eTOF)**: $-1.6 < \eta < -1.1$
 - Event Plane Detector (EPD): $2.1 < |\eta| < 5.1$
 - Improved particle detection capabilities
 - Better track momentum and event plane resolution

JINST 15 C07040 (2020)

Datasets

BES-II: Au+Au collisions at $\sqrt{s_{NN}} = 14.6$, 19.6, 27, and 54.4 GeV

Analysis Method

The particle azimuthal distribution can be written as:

$$E\frac{d^3N}{dp^3} = \frac{1}{2\pi} \frac{d^2N}{p_{\rm T}dp_{\rm T}dy} \left(1 + \sum_{n=1}^{\infty} 2v_n \cos\left[n(\varphi - \Psi_n)\right] \right)$$

$$v_n = \left\langle \cos\left[n(\varphi - \Psi_n)\right] \right\rangle$$

$$v_2: \text{ Elliptic flow } \qquad v_3: \text{ Triangular flow}$$

nth harmonic plane is calculated using the Q-vector:

$$Q_n \cos(n\Psi_n) = \sum_i w_i \cos(n\phi_i)$$

$$Q_n \sin(n\Psi_n) = \sum_i w_i \sin(n\phi_i)$$

$$\Psi_n = \left(\tan^{-1} \frac{\sum_i w_i \sin(n\phi_i)}{\sum_i w_i \cos(n\phi_i)}\right) / n$$

 \triangleright η-sub event plane method is used

CMS, PRC 87 014902 (2013)

Science 337, 310 (2012)

~10% improvement of resolution from BES-I owing to higher <u>TPC acceptance</u> and <u>track momentum</u> resolution

Light nuclei identification

	Proton	Deuteron	Triton	Helium-3
Identification using	m ² -distribution	z-distribution	z-distribution	z-distribution
To increase purity of the signal	nσ < 3.0	$2.8 < m^2 < 4.2$ $(GeV/c^2)^2$	$6.3 < m^2 < 9.5$ $(GeV/c^2)^2$	

$$z_i = \ln\!\left(rac{<\!dE/dx>_{measured}}{<\!dE/dx>_{i,theory}}
ight)$$
 $m^2 = p^2(rac{1}{eta^2}-1)$

Elliptic flow of light nuclei

Elliptic flow (v₂)

- \triangleright v₂ of light nuclei increases with increasing p_T for all collision energies in the measured p_T range
- \rightarrow v₂ shows mass ordering at low p_T between 1-2 GeV/c
- > Statistical errors have reduced significantly compared to BES-I results

Proton v₂: PRC 93, 014907 (2016); PRC 88, 014902 (2013); PLB 827, 137003 (2022)

Centrality dependence of v₂

- \triangleright v₂ of d shows a strong centrality dependence
- > Peripheral collisions have relatively larger v₂ due to their larger initial spatial anisotropy

Mass number scaling of v₂

> Systematic deviation of around 20-30% from mass number scaling is observed for all light nuclei in measured energies

Proton v₂: PRC 93, 014907 (2016); PRC 88, 014902 (2013); PLB 827, 137003 (2022)

Comparison with AMPT+Coal.

 \triangleright AMPT-SM model with a coalescence afterburner is in good agreement with $v_2(p_T)$ of d

PRC 72, 064901 (2005)

Nucl. Phys. A 729 (2003) 809-834

Proton v₂: Phys. Rev. C 93, 014907 (2016); Phys. Rev. C 88, 014902 (2013); Phys. Lett. B 827, 137003 (2022)

Triangular flow of light nuclei

Triangular flow (v_3)

- \triangleright v₃ of p and d increases with increasing p_T for all collision energies in the measured p_T range
- \rightarrow v₃ shows mass ordering at low p_T between 1-2 GeV/c

Mass number scaling of v₃

 \sim v₃(p_T) of d shows a good agreement with mass number scaling within ~10%

Comparison with AMPT+Coal.

 \triangleright AMPT-SM model with a coalescence afterburner is in good agreement with $v_3(p_T)$ of d

PRC 72, 064901 (2005) Nucl. Phys. A 729 (2003) 809–834

Summary

- \sim v₂(p_T) of d, t, and ³He is measured in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.6, 19.6, 27, and 54.4 GeV (COL)
 - Clear centrality dependence is observed for d for all collision energies
 - o 20-30% deviation of light nuclei v₂ from mass number scaling is observed
 - \circ AMPT+Coal. seems to well describe the v_2 of d
- \sim v₃(p_T) of p and d is measured in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.6, 19.6, 27, and 54.4 GeV (COL)
 - \circ v₃ of d shows a good agreement with mass number scaling
 - \circ AMPT+Coal. seems to well describe the v_3 of d

Elliptic and Triangular flow measurements suggest coalescence to be the dominant mechanism of light nuclei production in heavy-ion collisions

Outlook

- We will extend the analysis to the remaining BES-II energies (Au+Au, $\sqrt{s_{NN}} = 7.7, 9.2, 11.5, \text{ and } 17.3 \text{ GeV}$)
- > Stay tuned for more exciting results on light nuclei from BES II energies

Other light (hyper-)nuclei flow results from STAR at QM 2023

Chengdong's talk (#666): First observation of $v_1(y)$ and $v_2(y)$ of light (hyper-)nuclei in FXT energies

Xiaoyu's talk (#632), Sharang's poster (#414): Event plane correlated directed ($v_1\{\Psi_1\}$) and triangular ($v_3\{\Psi_1\}$) flow of light nuclei in FXT energies

Thank you