First results on spectra of identified hadrons in central Xe+La collisions from NA61/SHINE at CERN SPS

Oleksandra Panova for the NA61/SHINE Collaboration

Jan Kochanowski University, Kielce, Poland

oleksandra.panova@cern.ch

1. Introduction

This poster presents results on spectra and mean multiplicities of π^- , K^+ and K^- produced in the 20% most central $^{129}\text{Xe}+^{139}\text{La}$ collisions at the beam momentum 150A~GeV/c ($\sqrt{s_{NN}}=16.8~\text{GeV}$). These studies are the part of the strong interactions program of NA61/SHINE at the CERN SPS investigating the properties of the onset of deconfinement and searching for the possible existence of a critical point. The program is mainly motivated by the observed rapid changes in hadron production properties in central Pb+Pb collisions at about 30A~GeV/c by the NA49 experiment [PRC 77 024903, 2008]. These findings were interpreted as the onset of deconfinement. Current results of NA61/SHINE for lighter systems [EPJ C 74 2794, 2014; EPJ C 77 671, 2017; EPJ C 80 961, 2020; EPJ C 81 73, 2021; EPJ C 81 397, 2021; CERN-EP-2023-179] do not show any indications of the horn structure, however enhancement of the K^+/π^+ ratio was observed for Ar+Sc. Therefore, Xe+La, as a system with size between Ar+Sc and Pb+Pb, is crucial for the NA61/SHINE strong interaction program.

2. System size and energy scan

NA61/SHINE The heavy includes program ion momentum beam (13A - 150(158)A GeV/c, corresponding $\sqrt{s_{NN}} = 5.12 -$ 16.8(17.3)GeV) and sys- $^{7}\mathrm{Be} + ^{9}\mathrm{Be},$ (p+p, $^{40}Ar + ^{45}Sc,$ 129 Xe $+^{139}$ La, ²⁰⁸Pb+²⁰⁸Pb) to study the onset of deconfinement and search of the critical point of strongly interacting matter.

3. Methods of particle identification

Two ways of particle identification were used for the analysis:

• dE/dx particle identification for K^{\pm} is based on the dependence of the ionization energy loss of particle on it's momentum. This method doesn't work for momenta smaller than 5 GeV/c. Distribution of charged particles in the dE/dx - p plane and fit example:

• h^- method for π^- . Majority of negatively charged particles created in the collision are pions, therefore $d^2n/dydp_T$ spectrum of π^- may be calculated from h^- reconstructed spectrum using MC correction. Advantage of method – no cut on momentum like for dE/dx, therefore this method gives maximal possible acceptance.

4. Results

Corrected $d^2n/dydp_T$ spectra of π^- , K^+ and K^- :

 K^{\pm} and $\pi^ p_{\rm T}$ spectra at y = 0.4 - 0.6 and dn/dy spectrum of π^- :

5. System size dependence

The inverse slope parameter (T) of the p_T spectra of K^{\pm} at midrapidity:

System size dependence of the K^+/π^+ ratio at y=0 and $\langle K^+\rangle/\langle \pi^+\rangle$:

Energy dependence of the K^+/π^+ ratio at y=0 and $\langle K^+\rangle/\langle \pi^+\rangle$:

$$\langle K^{-} \rangle = 28.1 \pm 3.2 \pm 3.8,$$
 $\langle K^{+} \rangle = 52.0 \pm 4.2 \pm 6.7,$ $\langle \pi^{-} \rangle = 337.4 \pm 1.3 \pm 3.9,$ $\langle \pi^{+} \rangle = 324.9 \pm 1.2 \pm 3.8,$

 π^{+} was estimated from $\langle \pi^{-} \rangle$ using correction factor calculated from MC.

6. Conclusions

- First results on spectra and total yields of π^- , K^+ and K^- at $150A~{\rm GeV}/c$ are presented.
- Values of the K^+/π^+ ratio at y=0 and $\langle K^+\rangle/\langle \pi^+\rangle$ for Xe+La are between corresponding values for Ar+Sc and Pb+Pb.
- The inverse slope parameter of the $p_{\rm T}$ spectra of K^{\pm} at midrapidity for Xe+La is close to Pb+Pb.

This work was supported by the National Science Centre, Poland (grant no. 2018/30/A/ST2/00226)