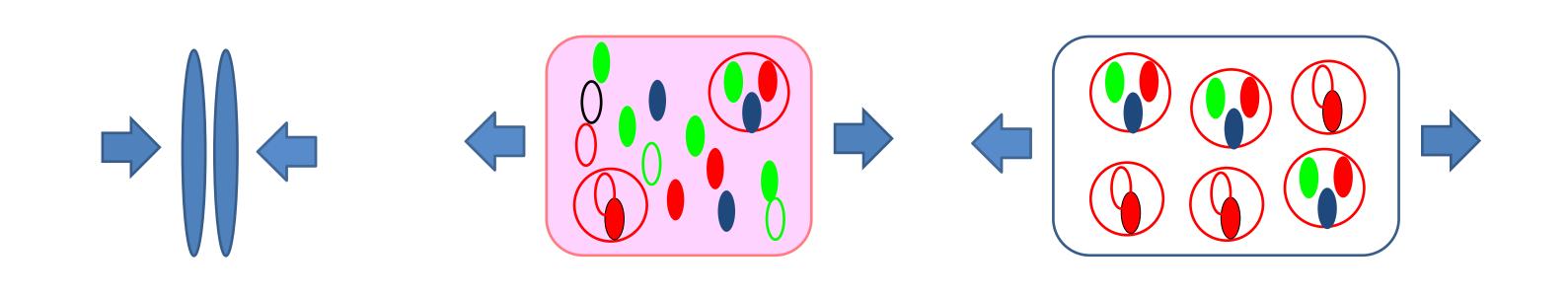


K_1/K^* enhancement as a signature of chiral symmetry restoration in heavy ion collisions

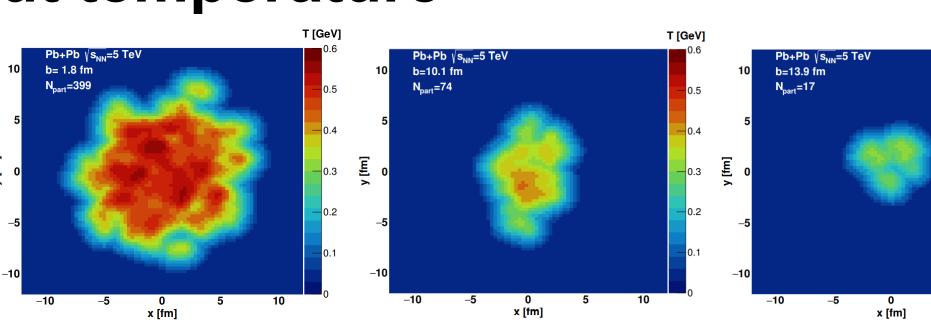

Haesom Sung, Su Houng Lee, Che-Ming Ko, Taesoo Song, Sungtae Cho, Juhee Hong, and Sanghoon Lim

ioussom@yonsei.ac.kr

Abstract

We extend the recent study of K_1/K^* enhancement as a signature of chiral symmetry restoration in heavy ion collisions at the Large Hadron Collider (LHC) via the kinetic approach to include the effects due to non-unity hadron fugacity during the evolution of produced hadronic matter and the temperature-dependent K_1 mass. Although the non-unity fugacity effect is found to reduce slightly the K_1/K^* enhancement due to chiral symmetry restoration, including the temperature-dependent K_1 mass leads to a substantial reduction in the K_1/K^* enhancement. However, the final K_1/K^* ratio in peripheral collisions still shows a more than factor of two enhancement compared to the case without chiral symmetry restoration and thus remains a good signature for chiral symmetry restoration in the hot dense matter produced in relativistic heavy ion collisions.

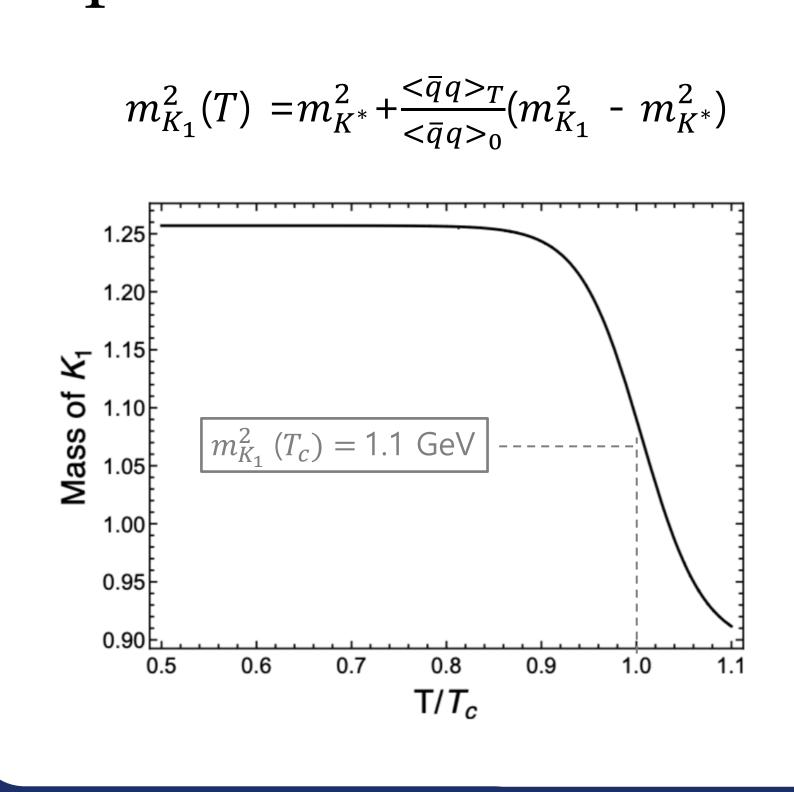
Introduction

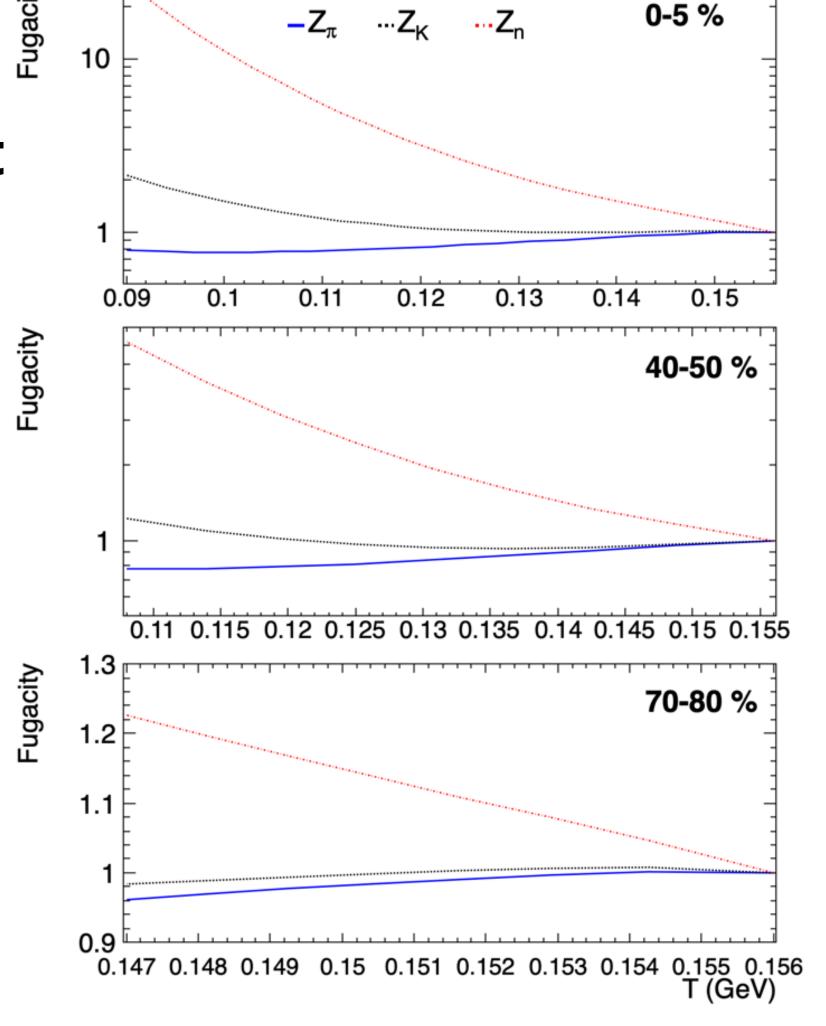

- Kinetic freeze-out temperature

M. L. Miller et al, Ann. Rev. Nucl. Part. Sci. 57, 205 (2007).

S. Acharya et al. [ALICE], Phys.

S. Acharya et al. [ALICE], Phys. Rev. C 101, no.4, 044907 (2020).[arXiv:1910.07678v2]


 $0-5\%: T_{kin} = 90 \text{MeV}$ $40-50\%: T_{kin} = 108 \text{MeV}$ $70-80\%: T_{kin} = 147 \text{MeV}$



The fraction of initial energy where the temperature is higher than **156MeV** is larger than **98%** in all three centrality ranges.

- π, K, and nucleon Fugacity &

- Temperature dependent K₁ Mass

Method

- Kinematic Equation for K_1 , K^* , and K

$$\frac{dN_{K_1}(\tau)}{d\tau} = \gamma_{K_1,K_1}(\tau)N_{K_1}(\tau) + \gamma_{K_1,K^*}(\tau)N_{K^*}(\tau) + \gamma_{K_1,K}N_{K}(\tau)
\frac{dN_{K^*}(\tau)}{d\tau} = \gamma_{K^*,K_1}(\tau)N_{K_1}(\tau) + \gamma_{K^*,K^*}(\tau)N_{K^*}(\tau) + \gamma_{K^*,K}N_{K}(\tau)$$

where

$$\gamma_{K_{1},K_{1}} = -(\langle \sigma_{K_{1}\pi \to K\pi} \rangle + \langle \sigma_{K_{1}\pi \to K^{*}\rho} v \rangle) z_{\pi} n_{\pi}^{T}
-(\langle \sigma_{K_{1}\rho \to K^{*}\pi} v \rangle + \langle \sigma_{K_{1}\rho \to K\rho} v \rangle) z_{\pi}^{2} n_{\rho}^{T}
-\langle \Gamma_{K_{1}\to K^{*}\pi} \rangle - \langle \Gamma_{K_{1}\to K\rho} \rangle, \qquad (5)$$

$$\gamma_{K_{1},K^{*}} = (\langle \sigma_{K_{1}\pi \to K^{*}\rho} v \rangle n_{\pi}^{T} + \langle \sigma_{K_{1}\rho \to K^{*}\pi} v \rangle z_{\pi} n_{\rho}^{T}) \frac{n_{K_{1}}^{T}}{n_{K^{*}}^{T}}
+\langle \Gamma_{K_{1}\to K^{*}\pi} \rangle \frac{n_{K_{1}}^{T}}{z_{\pi} n_{K^{*}}^{T}}, \qquad (6)$$

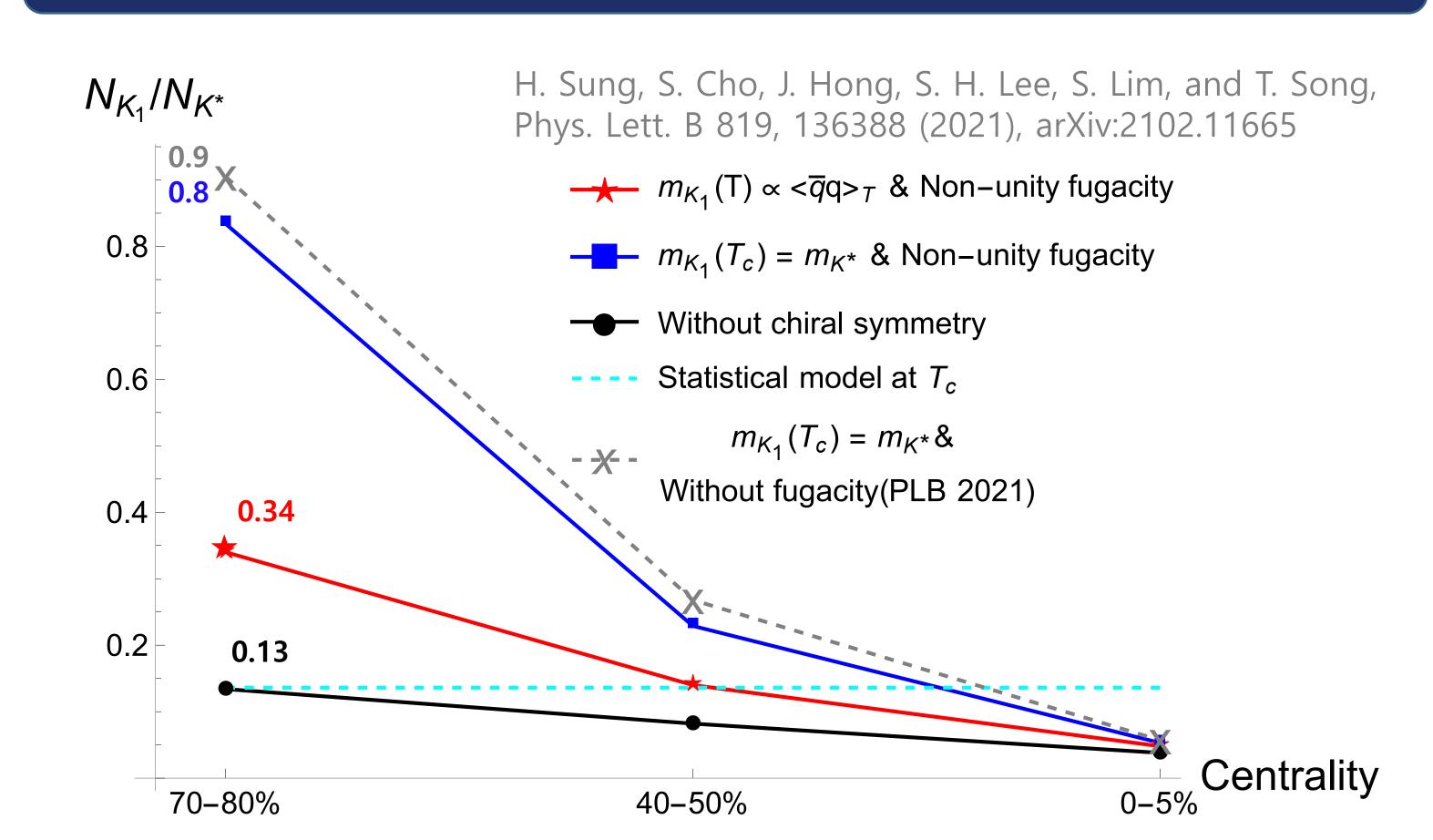
$$\gamma_{K_{1},K} = (\langle \sigma_{K_{1}\pi \to K\pi} v \rangle n_{\pi}^{T} + \langle \sigma_{K_{1}\rho \to K\rho} v \rangle z_{\pi} n_{\rho}^{T}) \frac{z_{\pi}^{2} n_{K_{1}}^{T}}{n_{K}^{T}}$$

$$+\langle \Gamma_{K_1 \to K\rho} \rangle \frac{z_{\pi} n_{K_1}^T}{n_K^T}. \tag{7}$$

$$\gamma_{K^*,K_1} = \langle \sigma_{K_1 \pi \to K^* \rho} v \rangle z_{\pi} n_{\pi}^T + \langle \sigma_{K_1 \rho \to K^* \pi} v \rangle z_{\pi}^2 n_{\rho}^T$$

$$+\langle \Gamma_{K_1 \to K^* \pi} \rangle, \tag{9}$$

$$\gamma_{K^*,K^*} = -\langle \sigma_{K^* \pi \to K\rho} v \rangle z_{\pi} n_{\pi}^T - \langle \sigma_{K^* \rho \to K\pi} v \rangle z_{\pi}^2 n_{\rho}^T$$


$$-(\langle \sigma_{K_1 \pi \to K^* \rho} v \rangle n_{\pi}^T + \langle \sigma_{K_1 \rho \to K^* \pi} v \rangle z_{\pi} n_{\rho}^T) \frac{z_{\pi}^2 n_{K_1}^T}{n_{K^*}^T}$$

$$-\langle \Gamma_{K_1 \to K^* \rho} \rangle - \langle \Gamma_{K_1 \to K^* \pi} \rangle \frac{z_{\pi} n_{K_1}^T}{n_{K^*}^T}, \qquad (10)$$

$$\gamma_{K^*,K} = (\langle \sigma_{K^*\pi \to K\rho} v \rangle n_{\pi}^T + \langle \sigma_{K^*\rho \to K\pi} v \rangle z_{\pi} n_{\rho}^T) \frac{z_{\pi}^2 n_{K^*}^T}{n_K^T} + \langle \Gamma_{K^* \to K\pi} \rangle \frac{z_{\pi} n_{K^*}^T}{n_K^T}.$$

$$(11)$$

Results

Conclusion

The effect of non-unity pion and kaon fugacity and the temperature dependent K_1 mass reduce the K_1/K^* enhancement due to chiral symmetry restoration

However, the K_1 production will be about 2.6 times greater than that of the thermal prediction in Pb-Pb peripheral collisions(70-80%) at the energy $\sqrt{s} = 5.02 TeV$.

Therefore, the chiral symmetry restoration in heavy-ion collisions can be seen through centrality dependence of K_1 and K^* production.

$$K_{1}^{-} \to \begin{cases} \rho^{0}K^{-} & \\ \rho^{-}\bar{K}^{0} & \\ \pi^{0}K^{*-} & \\ \pi^{-}\bar{K}^{*0} & \end{cases}, \quad \bar{K}_{1}^{0} \to \begin{cases} \rho^{+}K^{-} & \\ \rho^{0}\bar{K}^{0} & \\ \pi^{+}K^{*-} & \\ \pi^{0}\bar{K}^{*0} & \end{cases}$$

$$K^{*-} \to \begin{cases} \pi^0 K^- \\ \pi^- \bar{K}^0 \end{cases}, \quad \bar{K}^{*0} \to \begin{cases} \pi^+ K^- \\ \pi^0 \bar{K}^0 \end{cases}$$