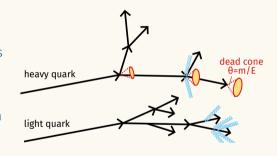
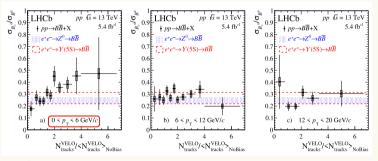
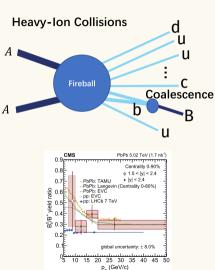
Studies of heavy quark dynamics using B mesons with the CMS experiment

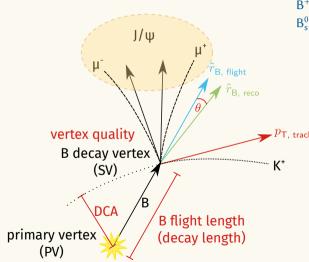

QM 2023

Tzu-An Sheng for the CMS Collaboration Sep. 5 2023


B mesons R_{AA} probes the properties of QGP

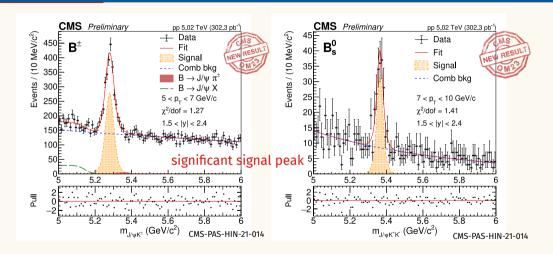

- Mass dependence of parton energy loss
 - Dead-cone effect: less radiative energy loss for heavy quarks
- · Beauty diffusion coefficient
 - Brownian motion of b quark in the medium

Coalescence and strangeness enhancement with B mesons


- Hadronization: in addition to fragmentation, b quarks also recombine with nearby constituent quarks into hadrons
- \cdot Enhanced B $_{
 m s}^0$ $R_{
 m AA}$ compared to B $^+$ expected at low $p_{
 m T}$

PLB 829 (2022) 137062

B_s⁰/B⁺ event selection

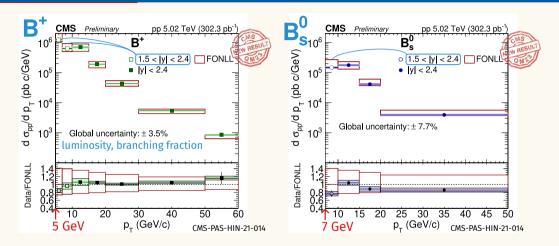

$$B^{+} \rightarrow J/\psi K^{+} \rightarrow \mu^{-} \mu^{+} K^{+}$$

 $B_{s}^{0} \rightarrow J/\psi \phi (1020) \rightarrow \mu^{-} \mu^{+} K^{+} K^{-}$

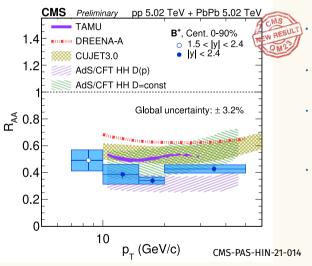
- Long-lived B mesons
 → large decay length significance
- Angle between B flight direction and PV-SV displacement

$$\cos \theta = \hat{r}_{\text{B, flight}} \cdot \hat{p}_{\text{T, RECO}}$$

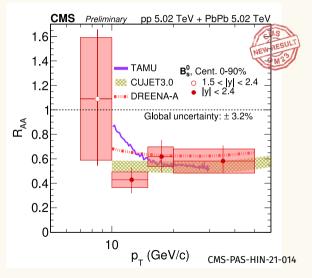
Expect $\hat{r}_{\text{B, flight}} \parallel \hat{p}_{\text{T, RECO}}$


- χ^2 Probability of the decay vertex
- \cdot p_{T} of the daughter tracks
- Track DCA (in z and x-y direction)

B_s⁰/B⁺ Yield extraction

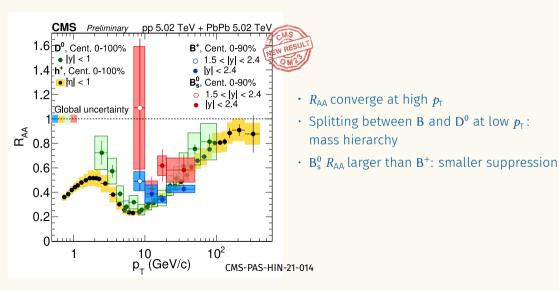

- B+ (semi-)peaking background:
 - Error function: Partially reconstructed B decay (e.g. $B^0 \to J/\psi(K^* \to K^+\pi^-)$
 - Double bifurcated Gaussian: misidentified π in B⁺ \rightarrow $1/\psi \pi^+$

Cross sections in pp collisions

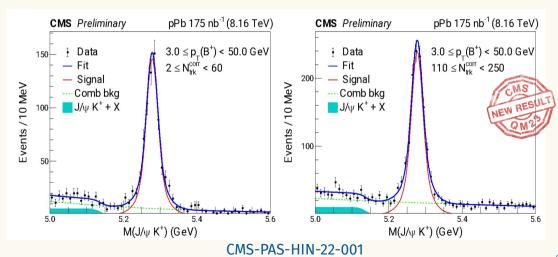


- Larger cross section at lower $p_{\scriptscriptstyle T}$, consistent with FONLL calculation
- · Kinematic constraints to go down to lower $p_{\scriptscriptstyle T}$
- Dominant systematics from inaccurate description of MC to Data

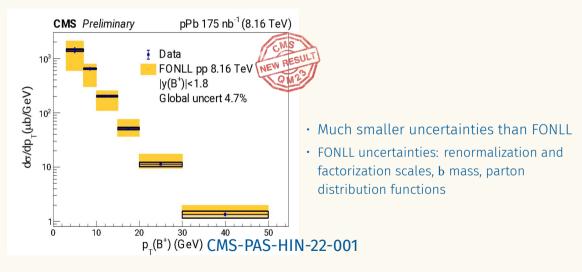
$B^+ R_{AA}$ compared with theory

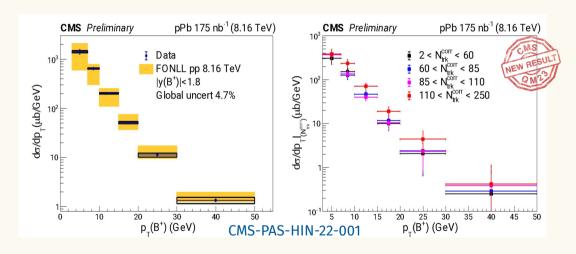


- DREENA-A, CUJET3.0: (perturbative QCD) collisional and radiative energy loss
- TAMU: (transport model) collisional energy loss
- AdS/CFT HH: thermal fluctuations in the energy loss; diffusion coefficient dependence on quark momentum
- Provides constraining power on the mechanism of beauty quark energy loss and hadronization

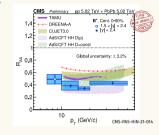


- $p_{\rm T} < 15$ GeV:
 - · TAMU: includes recombination
 - CUJET3.0: doesn't include recombination
- Roughly compatible with all 3 theory predictions within uncertainty

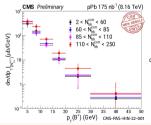

B mesons R_{AA} compared to light flavors

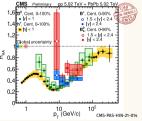

Bridging the gap: B⁺ production in the pPb system

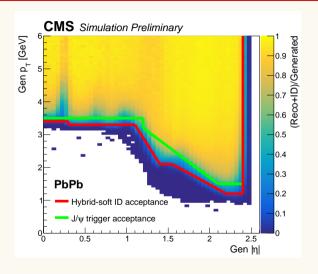
$\mathrm{B^+}\,\mathrm{d}\sigma/\mathrm{d}p_{\scriptscriptstyle T}$ in pPb agrees with FONLL

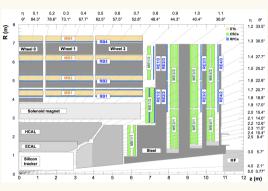


First measurement of B^+ as a function of N_{ch} in pPb


Summary


- \cdot Measured B meson cross section down to 5 GeV and R_{AA} down to 7 GeV
- · Improved precision of the B^+ and B^0_s meson R_{AA}
- · Able to distinguish different models based on the new accuracy
- \cdot A trend of B_s^0 R_{AA} larger than B^+ R_{AA}
- \cdot B meson $R_{
 m AA}$ larger than ${
 m D^0}$ and light flavor at $p_{
 m T} < 10$ GeV
- First B^+ measurement in pPb as a function of N_{ch}





Muon acceptance

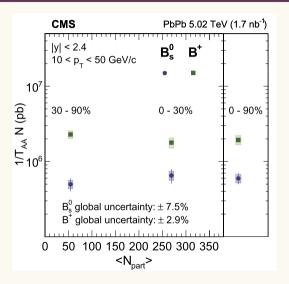
· Acceptance: material, magnetic field

CMS-PAS-MUO-21-001 13

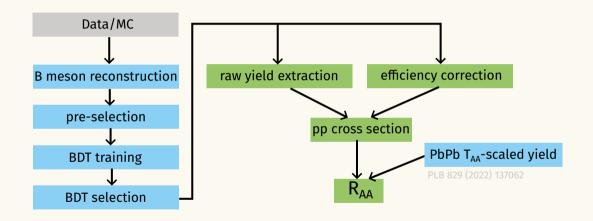
Systematic uncertainties

	$p_{\rm T}$ (GeV/c)							
Source	5–7	7–10	10 - 15	15-20	20-30	30-50	50-60	20-50
Hadron tracking efficiency	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4
Track selection	1.8	0.31	0.43	0.37	0.27	0.052	1.6	0.24
Data-MC discrepancy	4.7	7.2	7.2	0.98	0.87	0.92	0.83	0.84
p_{T} shape	0.02	0.0054	0.013	0.0095	0.0047	0.0032	0.018	0.0031
PDF variation	2.1	1.4	3.2	1.1	0.69	1.8	2.4	0.57
Muon efficiency	0.47	0.45	0.37	0.36	0.43	0.64	0.64	0.47
Bkg contamination of efficiency	1.5	2.8	0.84	0.41	0.46	0.18	1.1	0.41
Sum	6.2	8.3	8.3	2.9	2.7	3.2	4.1	2.7
Luminosity \mathcal{L}				1.9				
Branching fractions				2.9				
Sum (global systematics)	3.5							

$p_{\rm T}$ (GeV/c)									
7–10	10-15	15-20	20-50						
4.8	4.8	4.8	4.8						
0.65	0.2	2.7	0.78						
3.7	1.9	1.7	1.5						
0.045	0.015	0.0037	0.0024						
3.6	2	2.9	3.2						
0.46	0.38	0.35	0.45						
1.1	2.3	0.28	0.38						
7.2	6	6.5	6						
1.9									
7.5									
77									

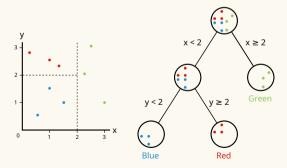

- Tracking efficiency: 2.4% per track
- Dominant systematics from inaccurate description of MC (especially DLS)

Data-averaged 2D map efficiency correction


$$\left\langle \frac{1}{\alpha(p_{\mathsf{T}},y) \times \varepsilon(p_{\mathsf{T}},y)} \right\rangle = \frac{\sum_{i,j}^{N_i,N_j} \frac{1}{\alpha(p_{\mathsf{T}},y)\varepsilon_{i,j}(p_{\mathsf{T}},y)} n_{i,j}(p_{\mathsf{T}},y)}{\sum_{i,j}^{N_i,N_j} n_{i,j}(p_{\mathsf{T}},y)},$$

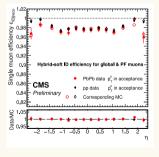
- Independent of the p_T distribution from MC
- \cdot Account for the correlation between p_{T} and y
- Regularize the distribution by taking the inverse of the total efficiency

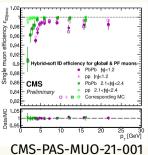
Multiplicity dependence in PbPb yield



Analysis procedure

Cut optimization


- Maximize the discriminating power by training a machine learning algorithm in the multi-dimensional parameter space.
- Boosted Decision Tree (BDT):
 - · Select on each variable sequentially in a tree structure
 - Train many weak classifiers with subsets of randomly selected samples, emphasizing the misclassified events



B_s⁰/B⁺ production yield calculation

$$\frac{\mathrm{d}\sigma_{\mathsf{pp}}}{\mathrm{d}p_{\mathsf{T}}} = \frac{1}{2} \frac{N_{\mathrm{obs}}(p_{\mathsf{T}})}{\mathscr{B}\mathscr{L}} \frac{1}{\Delta p_{\mathsf{T}}} \left\langle \frac{1}{\alpha(p_{\mathsf{T}}, y) \, \epsilon(p_{\mathsf{T}}, y)} \right\rangle$$

- Acceptance and efficiency corrected using a fine (p_T, y) 2D map
- \cdot Muon efficiency corrected by data/MC scale factors using J/ ψ

