

Heavy Flavor and Quarkonia

Krista Smith, on behalf of the PHENIX Collaboration

Quark Matter Houston 2023

September 5, 2023

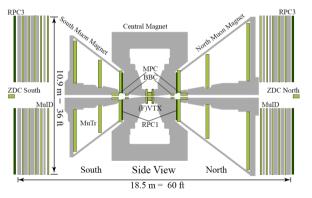
30th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

Brief Introduction

30th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

Quarkonia & Heavy Flavor Overview

Three recent PHENIX analyses focus on the following collision systems and investigate the following:


- 2013 p+p at $\sqrt{s} = 510 \text{ GeV}$
- 2014 ³He+Au, <u>Au+Au</u> at $\sqrt{s_{_{NN}}} = 200 \text{ GeV}$
- 2015 <u>p+p</u>, p+Al, p+Au at $\sqrt{s_{_{NN}}} = 200 \text{ GeV}$
- 2016 d+Au, Au+Au at $\sqrt{s_{\scriptscriptstyle NN}} = 200 \text{ GeV}$

- **1** Do we see evidence for multi-parton interactions at RHIC energies?
- 2 Are there final state effects on charmonium production in p+p collisions?
- 3 Is there evidence of mass ordering for charged hadron vs. open heavy flavor v₂?

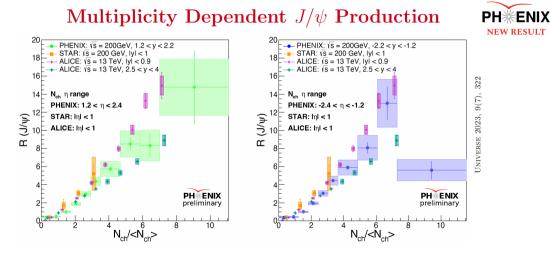
30th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

PHENIX Muon Arms

South arm: $-2.2 < \eta < -1.2$ North arm: $1.2 < \eta < 2.4$

• Forward Silicon Vertex Detector (FVTX)

- 4 layers of silicon strip stations for precision measurement of track trajectory
- Charged particle multiplicity
- Muon Tracker (MuTr)
 - 3 cathode strip chambers measure momentum of charged tracks
- Muon Identifier (MuID)
 - $\circ~5$ layers of steel absorbers for hadron and muon separation

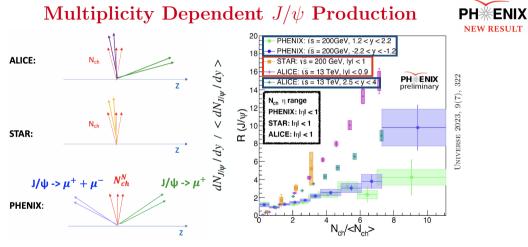

30th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

Quarkonia & Heavy Flavor Results

• First PHENIX measurement of relative J/ψ yields R vs. normalized event charged particle multiplicity $N_{ch}/\langle N_{ch}\rangle$ in p+p collisions at $\sqrt{s}=200$ GeV

Heavy Flavor and Quarkonia in PHENIX

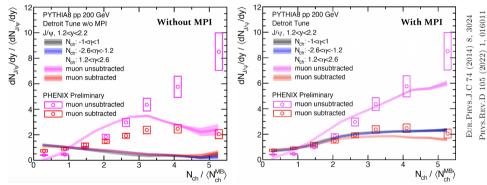
Krista Smith


30th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

30th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

Multiplicity dependent measurements vary based on rapidity of N_{ch} 0

• After J/ψ tracks subtracted, PHENIX multiplicity dependence similar at fwd, bkwd rapidity



6/28

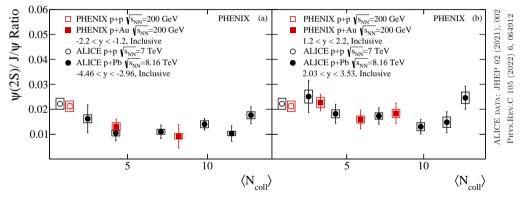
Krista Smith

30th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

Multiplicity Dependent J/ψ Production

• J/ψ relative yields compared with PYTHIA8 Detroit tune for RHIC energies

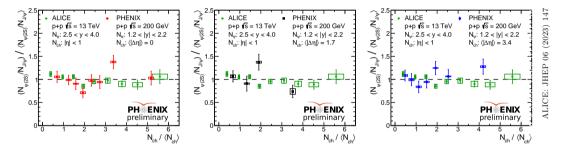
- Data is shown for J/ψ multiplicity both before and after J/ψ tracks subtracted
 - Multi-parton interactions are required to reproduce PHENIX data 0


Krista Smith

30th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

PH^{*}ENIX

$\psi(2S)$ to J/ψ Ratio at RHIC and LHC


• The $\psi(2S)$ to J/ψ ratio in p+p collisions at RHIC, LHC show no clear energy dependence

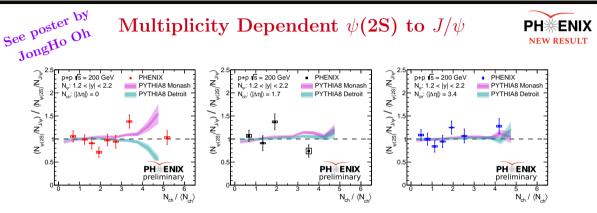
• Comparison of the p+A to p+p ratio strongly suggests final state effects in p+A collisions at backward rapidity, as initial state effects expected to largely cancel

Krista Smith

30th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

Multiplicity Dependent $\psi(\mathbf{2S})$ to J/ψ

- Multiplicity-dependent studies in small systems provide a testing ground for examining the onset of QGP-like effects
- PHENIX ($\sqrt{s_{_{NN}}}=200 \text{ GeV}$) and ALICE ($\sqrt{s_{_{NN}}}=13 \text{ TeV}$) results consistent, with weak multiplicity dependence more or less consistent with unity
 - Note that ALICE results have charged particle multiplicity measured at mid-rapidity



PH^{*}ENIX

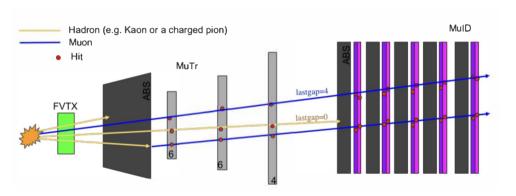
Krista Smith

30th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

10/28

Los Alamos

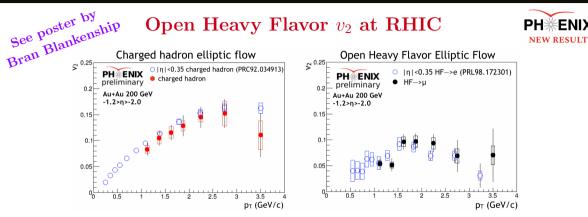
• $\psi(2S)$ to J/ψ ratios shown with particle multiplicity measured in different $|\Delta \eta|$ ranges


- Co-moving particle or QGP related final state effects appear to be small in RHIC p+p collisions, with minimal change in ratio with increasing particle multiplicity
 - Overall, both PYTHIA tunes with MPI describe measurements well at lower multiplicity

Krista Smith

30th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

Open Heavy Flavor v_2 at **RHIC**



• Charged hadron tracks shown stopping in Muon Arm absorber, last gap 0 of MuID

• Heavy flavor muon tracks shown penetrating the full length of Muon Identifier

Krista Smith

30th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

12/28

Los Alamos

ΕΝΙΧ

- First-ever RHIC measurement of open heavy flavor elliptic flow at forward rapidity
 - Open heavy flavor v_2 consistent with PHENIX mid-rapidity results
- Mass ordering apparent where lighter charged hadrons (left) show stronger elliptic flow • Only 2014 data shown (2016 data will increase statistics ~ 4 times)

30th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

Conclusion

SMALL SYSTEM COLLISIONS

- Multiplicity dependent J/ψ varies based on η of charged particle tracks
 - $\circ~$ PHENIX data well described by PYTHIA Detroit tune with MPI
 - \implies Evidence for MPI at RHIC energies
- $\psi(2S)$ to J/ψ ratio in p+p collisions shows weak dependence on multiplicity \implies No evidence for $\psi(2S)$ final state effects in p+p collisions at RHIC

LARGE SYSTEM COLLISIONS

- First RHIC measurement of open heavy flavor v_2 at forward rapidity
 - Results consistent with PHENIX mid-rapidity measurements, suggesting similar QGP effects (temperature/pressure gradients) at both rapidities
 Mass ordering observed at forward rapidity

p+p

30th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

Back-Up

Krista Smith

30th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

PHENIX, Past & Present

PHENIX Overview

• **2000–2016**

PHENIX recorded heavy-ion data at RHIC for 16 years

• Publications

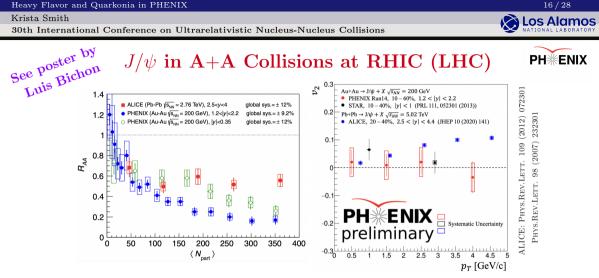
PHENIX has 215 physics papers published (75 in *Phys. Rev. Lett.*)

- Presentations/Theses Zenodo contains ~400 materials
- Recent Highlights

2023 direct photon measurement **BNL** News Release

Data Preservation

 \circ 2021–Present

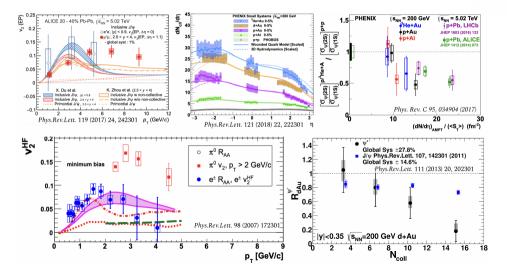

Efforts led by Gabor David, Maxim Potekhin, Christine Nattrass and team of undergraduates at UT Knoxville

• Publications

PHENIX data from ${\sim}200$ PHENIX publications uploaded to HEPData

• Present

Still have PHENIX data from ${\sim}30$ publications to upload


• PHENIX J/ψ R_{AA} shows stronger suppression than ALICE at both forward and mid-rapidity

- $\circ~$ Regeneration effects modify charmonia measurements at LHC energies
- At RHIC energies, regeneration not as significant $\rightarrow J/\psi$ flow consistent with zero

Krista Smith

30th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

Motivation for Current Work

30th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

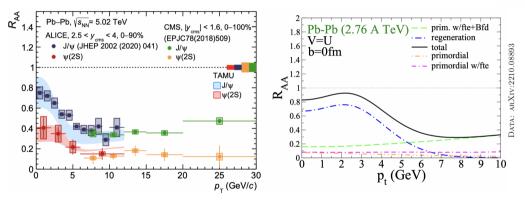
18/28

PH^{*}ENIX

Recent PHENIX Heavy Ion Talks

QM 2022, WWND 2023, DIS 2023, and HP 2023 (all talks hyperlinked)

Charm and bottom quark energy loss and flow measurements in Au+Au collisions by PHENIX J/ψ forward rapidity azimuthal anisotropy in Au+Au collisions at 200 GeV measured by PHENIX Nuclear modification of hard scattering processes in small systems at PHENIX J/ψ and $\psi(2S)$ production in small systems with PHENIX Low p_T direct photon production at RHIC measured with PHENIX Exploring jet modification via γ -hadron and π^0 -hadron correlations in Au+Au collisions at PHENIX Study of multiplicity-dependent charmonia production in p+p collisions at PHENIX Systematic study of the energy loss in OGP at RHIC-PHENIX Transverse single spin asymmetries of charged hadrons from p+p, p+Al, and p+Au collisions in PHENIX Recent longitudinal spin asymmetry and cross section results at PHENIX Transverse single-spin asymmetry of midrapidity π^0 and n mesons in p+Al and p+Au collisions at PHENIX PHENIX measurements of azimuthal anisotropy of heavy flavor hadrons and J/ψ in Au+Au collisions


30th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

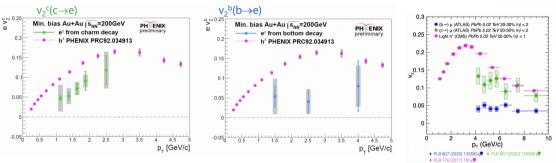
PH^{*}ENIX

Charmonia in PbPb Collisions

• J/ψ and $\psi(2S) R_{AA}$ strongly suppressed at high p_T - consistent with CMS results

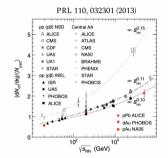
- Transport Model predictions expect sizeable regeneration at LHC energies
 - $\circ~q\bar{q}$ pairs close in phase space can recombine to form a quarkonium state

Krista Smith


30th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

PH^{*}ENIX

Charm & Bottom v_2 in A+A Collisions


- PHENIX v_2 at central rapidity show mass ordering consistent with R_{AA} results
- Elliptic flow results for charm and bottom differ at RHIC and LHC energies
- PHENIX is currently working to extend these measurements to forward rapidity
 - $\circ~$ Necessary for a more complete understanding of heavy flavor interactions with QGP

30th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

Charged Particle Multiplicity

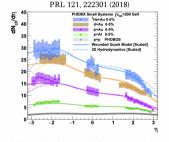
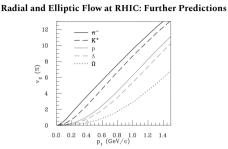
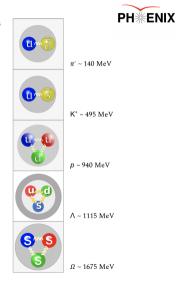


FIG. 2 (color online). Charged-particle pseudorapidity density at midrapidity normalized to the number of participans, calculated with the Glauber model, for p + Pb, p + Au, and d + Au[8,9] collisions as a function of $\sqrt{s_{NN}}$, compared to NSD [10–16] and inelastic [12,17–19] $pp(p\hat{p})$ collisions as well as central heavy-ion [19–30] collisions. The curves $\propto s_{NM}^{(1)}$ and $s_{NB}^{(2)}$ from Ref. [28]) are superimposed on the NSD $pp(p\hat{p})$ and central heavy-ion data, respectively, while $\propto s_{NM}^{(1)}$ (from Ref. [18]) is superimposed on the inelastic $pp(p\hat{p})$ data.


FIG. 1. Charged hadron $dN_{ch}/d\eta$ as a function of pseudo-rapidity in high-multiplicity 0%-5% central 3 He+Au, dl+Au, p+Au, and p+Al collisions at $\sqrt{s_{NN}}=200$ GeV. Also shown are results in inelastic p+p collisions at $\sqrt{s_{NN}}=200$ GeV as measured by the PHOBOS Collaboration [27]. Predictions from the wounded-quark [3] and hydrodynamical [4] models are shown. The calculations have an overall normalization factor (5) to best match the data. These factors are S=0.88, 0.93, 0.85, 0.77 for the wound quark model for p+Au, d+Au, "He+Au respectively, and S=0.81, 0.96, 0.75 for the hydrodynamical model for p+Au, d+Au respectively.

Krista Smith

30th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions



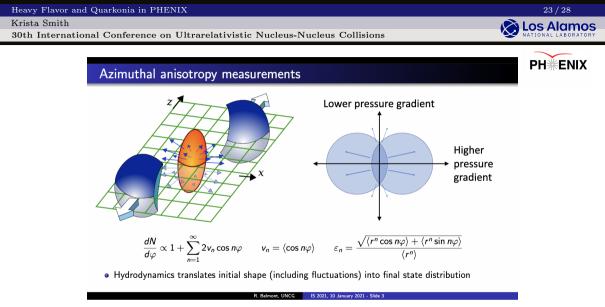

3. Analytical results -- In the remainder we try to undenstand the hydrodynamic behaviour of $v_2(n_i)$ and its dependence on the hadron mass and freeze-out temperature, using a simple analytical model. Before going into the technical details we give a simple intuitive argument why, at small p_t , the elliptic flow of heavier particles is smaller than for lighter ones. It is well-known that radial flow shifts the p_t -distributions to larger values of p_t , and that for nonrelativistic $n_i < m$ this effect increases with the particle mass m and the radial flow velocity $\langle v_1 \rangle$. In the extreme case of a thin shell expanding at high velocity, the spectrum actually develops a relative minimum at $p_i = 0$ and a peak at nonzero p_i ("blast wave peak" [19]), and with increasing mass and (v_{\perp}) the peak shifts to larger p_{i} . Relative to the case without radial flow, the spectrum is thus depleted at small p_i , and the depletion as well as the p, range over which it occurs increase with m and $\langle v_{\perp} \rangle$.

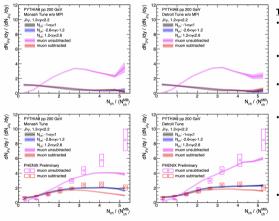
FIG. 3. p_t -differential elliptic flow at midrapidity for various hadrons from minimum bias Au+Au collisions at \sqrt{s} = 130 A GeV for EOS Q(120).

Figure 3 shows the differential momentum anisotropy $v_2(p_t)$ for different hadron species for EOS Q and $T_f \approx$ 120 MeV. At a given value of p_t , the elliptic flow is seen to decrease with increasing particle mass. This is a consequence of rest-mass-dependent radial flow effects on the shape of the single-particle p_r -spectrum, as will be analytically discussed in the following section.

Phys.Lett.B 503 (2001)

Credit: Ron Belmont, Initial Stages 2021

Krista Smith


30th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

24/28

PH^{*}ENIX

3. PHENIX Results - Comparison with PYTHIA8

Turn off the MPI effect

- Multiplicity at <u>different acceptances</u> and the same acceptance with subtraction (red): show a <u>decreasing trend</u>
- PYTHIA with MPI can better describe the data
 <u>MPI effect is important at 200 GeV</u>
- Monash Tune for the LHC energies Detroit Tune for the RHIC energies (*Phys.Rev.D 105 (2022) 1, 016011)
- J/ψ at forward rapidity (1.2<y<2.2)

Multiplicity at <u>different (other) acceptance</u>: similar multiplicity dependence between two tunes

Multiplicity at <u>same acceptance</u>: slightly stronger dependence in <u>Detroit Tune</u> at high multiplicity

• Detroit Tune shows a better agreement with the PHENIX results

Krista Smith

30th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

PHENIX: (5 = 200GeV -2.2 < v < -1.) $< dN_{Jlw} / dy >$ = 13 TeV /vl < 0.9 PH ENIX 15 - 13 TeV 25 < V N., n range (≜/ſ) PHENIX: Inl < STAR: Inl = 1 ALICE: Int dN_{Jlw}/dy / m $N_{ct}/\langle N_{ct}\rangle$ PH ENIX $< dN_{Jlw} / dy >$ u' subtracted (h/r) č pp \s = 200 GeV dN_{J/w} / dy / 1.2 - 4 - 2.2 $N_{ct}/\langle N_{ct} \rangle$, $\tilde{N}_{ct}/\langle \tilde{N}_{ct} \rangle$

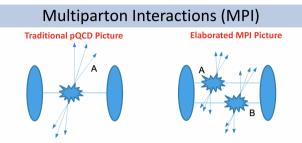
- J/ψ at mid-rapidity: Similar dependence between STAR* (200 GeV) and ALICE (13 TeV) "Tracks from J/ψ are included in multiplicity calculation
- J/ψ at forward rapidity:

Stronger dependence in ALICE (13 TeV) than PHENIX** (200 GeV) **Tracks from J/ψ are excluded in multiplicity calculation

→ Different trends at different rapidity

rapidity-dependent MPI? or contribution from J/w to multiplicity calculation?

- Measuring J/ψ and multiplicity in the same direction: When including tracks from J/ψ, the multiplicity dependence becomes stronger and comparable with the ALICE results
- Measuring multiplicity in <u>different directions</u>: Similar multiplicity dependence


Credit: JongHo Oh, 2022 RHIC/AGS Annual User's Meeting

30th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

PH^{*}ENIX

- Hadronic collider at higher energy enables the phase space for MPI
 - o Allow several semi-hard scatterings near the charmonium mass
- Traditional single hard scattering picture is insufficient
 - $\,\circ\,\,$ Typically 4 10 scatterings at LHC pp collisions
- MPI: influence charmonium production at high energy hadronic colliders
- Enhance of J/ψ production along with color reconnection model

Credit: Zhaozhong Shi, 2023 Initial Stages

Krista Smith

30th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

Multiparton Interactions (MPI)

Hard Partonic Scattering: Energetic partons scatter off each other with large momentum transfers. In the traditional pQCD picture, it is simply described as a single hard scattering between two partons in each collision. They can be calculated analytically by pQCD with Feynman diagrams to a very high precision [20]. At RHIC, the *cz* pair production is dominated by gluon–gluon fusion: $gg \rightarrow cz$.

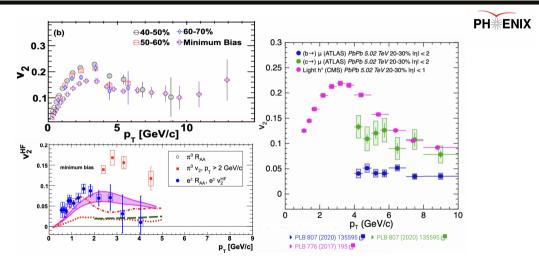
Multiple Parton Interaction (MPI): MPI is an elaborate paradigm to describe the partonic interaction stage at high-energy colliders at RHIC, Tevatron, and the LHC [21]. According to MPI, one hard scattering, accompanied by several semi-hard interactions, takes place in each collision. All of them need to be included in the partonic scattering amplitudes. At present, high-energy hadronic colliders create more phase space for MPI to occur. Many studies at the LHC suggest MPI should be included to better describe the data [22].

Universe 2023, 9(7), 322

The evidence for MPI comes from high p_T events observed in hadron collisions at the ISR at CERN [1] and later at the Fermilab Tevatron collider[2,3,4]. At lower p_T , underlying event (UE) observables have been measured in $p\bar{p}$ collisions in dijet and Drell-Yan events at CDF in Run I [5] and Run II [6] at center-of-mass energies of $\sqrt{s} = 1.8$ TeV and 1.96 TeV respectively, and in pp collisions at $\sqrt{s} = 900$ GeV in a detector-specific study by CMS [7].

At small transverse momentum MPI have been shown to be necessary for the successful description of the UE in Monte Carlo generators such as PYTHIA [8,9,10] or HERWIG [11,12]. Additionally, MPI are currently invoked to account for observations at hadron colliders that would not be explained otherwise: the cross sections of multi-jet production, the survival probability of large rapidity gaps in hard diffraction, etc. [13]. The wide range of phenomena in which MPI are involved highlights the urgency of a more thorough understanding of these reactions both experimentally and from a theoretical point of view.

arXiv:1111.0469v2



t

Krista Smith

30th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

Top left: PHENIX, Phys.Rev.C 92 (2015) 3, 034913. Bottom left: PHENIX, Phys.Rev.Lett. 98 (2007)

172301. Right: ATLAS and CMS.

28 / 28

