Modification of heavy quark hadronization in high-

 multiplicity collisions at LHCbChenxi Gu, Laboratoire Leprince-Ringuet (École Polytechnique, CNRS-IN2P3) on behalf of the LHCb collaboration
Leprince-Ringuet
$\star \star \star$ Excellence in Science and Technology

Outline

- Motivation
- LHCb detector
- Measurement of prompt D_{s}^{+}and D^{+}production in $p \mathrm{~Pb}$ collisions

LHCb-PAPER-2023-006, in preparation LHCb-PAPER-2023-021, in preparation

- Measurement of prompt Ξ_{c}^{+}production in $p \mathrm{~Pb}$ collisions arXiv:2305.06711
- Measurement of Λ_{b}^{0} / B^{0} ratio in high multiplicity $p p$ collisions LHCb-PAPER-2023-027, in preparation
- Summary

Motivation

- Heavy quark offers unique probe of the hadronization process
$>$ Heavy quark is produced at early stages of the collision, well described by pQCD.
$>$ Fragmentation mechanism: lots of partons produced by outgoing quarks fragment into hadrons.
$>$ Coalescence mechanism: multiple overlapping quarks

Baryon/meson ratios are sensitive to hadronization. in position-velocity phase space combine to form hadrons.

- High multiplicity collisions are often accompanied by strangeness enhancement
$>$ In big systems $(\mathrm{PbPb}, \mathrm{AuAu})$: s quark enhancement mainly comes from gluon fusion in QGP.
$>$ In small systems $(p p, p \mathrm{~Pb}): s$ quarks enhancement mechanism is still debated (dynamical core-corona initialization, rope hadronization, color reconnection...).

Strange hadron/non strange hadron ratios are sensitive to hadronization and strangeness enhancement.

LHCb detector

- A single-arm spectrometer in the forward direction, charm \& beauty factory
$>$ Vertex Locator ($20 \mu \mathrm{~m}$ IP resolution)
$>$ Tracking system $(\Delta p / p=0.5-1.0 \%)$
$>$ PID optimal for $\mu, \mathrm{p}, \mathrm{K}, \pi$

$$
\varepsilon(K \rightarrow K) \sim 95 \%
$$

$$
\& \varepsilon(\mu \rightarrow \mu) \sim 97 \%
$$

$>$ Flexible software trigger

- VELO tracks : have hits in the VELO
- Back tracks : subset of VELO tracks, point away from the LHCb
- PV tracks : tracks used to reconstruct primary vertex

D_{s}^{+} / D^{+}ratio in $p \mathrm{~Pb}$ collisions

D_{S}^{+}and D^{+}nuclear modification factor

$$
R_{p \mathrm{~Pb}}\left(p_{\mathrm{T}}, y^{*}\right) \equiv \frac{1}{A} \frac{\mathrm{~d}^{2} \sigma_{p \mathrm{~Pb}}\left(p_{\mathrm{T}}, y^{*}\right) / \mathrm{d} p_{\mathrm{T}} \mathrm{~d} y^{*}}{\mathrm{~d}^{2} \sigma_{p p}\left(p_{\mathrm{T}}, y^{*}\right) / \mathrm{d} p_{\mathrm{T}} \mathrm{~d} y^{*}}
$$

- D_{s}^{+}and D^{+}production cross-section in $p p$ collision at $\sqrt{S_{\mathrm{NN}}}=8.16 \mathrm{TeV}$ is obtained from the interpolation of $\sqrt{S_{\mathrm{NN}}}=5,13 \mathrm{TeV}$. JHEP 06 (2017) 147 JHEP 03 (2016) 159
- $R_{p \mathrm{~Pb}}$ consistent with nPDFs calculations in the forward, lower than nPDFs calculations in the backward high $p_{\text {T }}$ region.
- The main systematic uncertainty comes from the $p p$ results and interpolation.

- R_{FB} shows a rising trend with p_{T}. Consistent with nPDFs at low p_{T}, larger than theoretical calculations at high p_{T}.
- R_{FB} shows a slight dependence on y^{*}, consistent with nPDFs calculations.
- Potential explanations for backward production suppression :
$>$ Weaker antishadowing effect in initial state.
$>$ Higher energy loss for backward in final state (high $p_{\mathrm{T}} \rightarrow$ low p_{T}).

D_{S}^{+} / D^{+}ratio vs 0T and $y^{*} 1 n$ ppocolisions

$$
\begin{aligned}
& D_{s}^{+}(1969)=c \bar{s} \\
& D^{+}(1869)=c \bar{d}
\end{aligned}
$$

- uncorrelated systematic uncertainty
- statistic uncertainty
- correlated systematic uncertainty

EPPS 16 Rwgt nCTEQ15 Rwgt

- D_{s}^{+} / D^{+}ratio shows no dependence on p_{T}.
- D_{S}^{+} / D^{+}ratio is consistent with the result of LHCb in $p p$ collisions within uncertainties.
- D_{s}^{+} / D^{+}ratio is consistent with ALICE measurements with higher precision.
- Higher D_{s}^{+} / D^{+}ratio for backward compared to forward may be due to coalescence contribution.
- D_{s}^{+} / D^{+}ratio also shows no dependence on p_{T}.
- D_{S}^{+} / D^{+}ratio is consistent with theoretical calculation (EPPS16, $\mathrm{nCTEQ} 15)$ in forward.
- The backward D_{s}^{+} / D^{+}ratio is also slightly higher than the forward ratio.

D_{s}^{+} / D^{+}ratio vs multiplicity in $p \mathrm{~Pb}$ collisions at $\sqrt{S_{\mathrm{NN}}}=8.16 \mathrm{TeV}$

- D_{S}^{+} / D^{+}ratio increases with multiplicity.
- D_{S}^{+} / D^{+}ratio enhancement is more pronounced in backward rapidity.
- On average, D_{S}^{+} / D^{+}ratio is consistent with ALICE measurements.
- This implies a modification of charm quark hadronization in high multiplicity $p \mathrm{~Pb}$ collisions.

$N_{\text {Tracks }}^{\mathrm{PV}}:$ Number of tracks used to reconstruct primary vertex

$\Xi_{c}^{+} / \Lambda_{c}^{+}$ratio vs p_{T} and y^{*} in $p \mathrm{~Pb}$ collisions at $\sqrt{S_{\mathrm{NN}}}=8.16 \mathrm{TeV}$

- $\Xi_{c}^{+} / \Lambda_{c}^{+}$ratio almost independent of p_{T}, suggests that similar effects govern the production of Ξ_{c}^{+}and Λ_{c}^{+}.
$\Xi_{c}^{+}(2467)=u s c$
$\Lambda_{c}^{+}(2286)=u d c$
Both are reconstructed by $p K^{-} \pi^{+}$
- $\Xi_{c}^{+} / \Lambda_{c}^{+}$ratio is consistent with theoretical calculation (EPPS16).
- The backward $\Xi_{c}^{+} / \Lambda_{c}^{+}$ratio is slightly higher than the forward ratio.

Ξ_{c}^{+} / D^{0} ratio vs p_{T} in $p \mathrm{~Pb}$ collisions at $\sqrt{S_{\mathrm{NN}}}=8.16 \mathrm{TeV} \quad D^{\circ}(1865)=c \bar{u}$

- D^{0} cross-section at $\sqrt{S_{\mathrm{NN}}}=8.16 \mathrm{TeV}$ is taken from another LHCb analysis. arXiv:2205.03936
- Ξ_{c}^{+} / D^{0} ratio is consistent with theoretical calculation (EPPS16).
- Ξ_{c}^{+} / D^{0} ratio is similar in forward and backward rapidity.

- The Ξ_{c}^{0} / D^{0} ratios measured in $p \mathrm{~Pb}$ collisions from ALICE are significantly larger than that in $p p$ collisions.

Λ_{b}^{0} / B^{0} ratio vs p_{T} in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$

$\Lambda_{b}^{0}(5619)=u d b$ $B^{0}(5279)=d \bar{b}$

- Λ_{b}^{0} / B^{0} ratio (blue points) is consistent with previous $\mathrm{LHCb} p p, p \mathrm{~Pb}$ results within uncertainties.
- The green solid curve uses the measured spectrum of baryons collected by Particle Data Group (PDG).
- The black dashed curve uses the expanded set of excited states that are expected by the Relativistic Quark Model (RQM).
- The enhancement of RQM relative to the PDG is attributed to the feed down from thus far unobserved excited b baryons.
- LHCb data tend to favor RQM at $p_{T}<15 \mathrm{GeV} / c$

Bars = stat \oplus sys Boxes $=B R$ uncertainty

Λ_{b}^{0} / B^{0} ratio vs multiplicity in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$

- Λ_{b}^{0} / B^{0} ratio increases with multiplicity.
- In the lowest multiplicity bin, Λ_{b}^{0} / B^{0} ratio can reach the value in $e^{+} e^{-}$collisions.
- This indicates that coalescence emerges as an additional hadronization mechanism for baryons at high multiplicity events.
$N_{\text {tracks }}^{\mathrm{VELO}}:$ Number of track with hits in VELO

Λ_{b}^{0} / B^{0} ratio vs p_{T} in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$

- Λ_{b}^{0} / B^{0} ratio significantly higher than $e^{+} e^{-}$result at low p_{T}, and shows strong multiplicity dependence (coalescence may contribute here).
- Λ_{b}^{0} / B^{0} ratio consistent with $e^{+} e^{-}$ result at high p_{T}, shows weaker multiplicity dependence (fragmentation dominant).
- Λ_{b}^{0} / B^{0} ratio shows weaker multiplicity dependence on backward VELO tracks.

$$
\text { Bars = stat } \oplus \text { sys }
$$

Summary

- In $p p$ and $p \mathrm{~Pb}$ collisions, LHCb have observed an enhancement of $D_{S}^{+} / D^{+}, \Lambda_{b}^{0} / B^{0}$ as a function of multiplicity, with this enhancement being particularly pronounced in the low p_{T} region. It is qualitatively consistent with expectations arising from quark coalescence as an adjunct hadronization mechanism and strangeness enhancement.
- From a theoretical perspective, this baryon/meson ratio enhancement may also be caused by feed down from excited states. To test this hypothesis, further measurements from excited states are required.
- In $\sqrt{S_{\mathrm{NN}}}=8.16 \mathrm{TeV} p \mathrm{~Pb}$ collisions, The backward $\Xi_{c}^{+} / \Lambda_{c}^{+}$ratio is slightly higher than the forward ratio. Ξ_{c}^{+} / D^{0} ratio doesn't show a difference in the forward and backward. Further measurements are needed on these ratios in $p p$ collisions.

Thanks for listening!

D_{s}^{+}and D^{+}nuclear modification factor

D_{s}^{+}and D^{+}forward-backward production ratio

D_{s}^{+} / D^{+}ratio in $p \mathrm{~Pb}$ collisions at $\sqrt{S_{\mathrm{NN}}}=5.02 \mathrm{TeV}$

