

Outline

- Motivation
- LHCb detector
- Measurement of prompt D_S^+ and D^+ production in pPb collisions LHCb-PAPER-2023-006, in preparation LHCb-PAPER-2023-021, in preparation
- Measurement of prompt \mathcal{E}_c^+ production in pPb collisions arXiv:2305.06711
- Measurement of Λ_b^0/B^0 ratio in high multiplicity pp collisions LHCb-PAPER-2023-027, in preparation
- Summary

Motivation

- Heavy quark offers unique probe of the hadronization process
 - ➤ Heavy quark is produced at early stages of the collision, well described by pQCD.
 - ➤ Fragmentation mechanism: lots of partons produced by outgoing quarks fragment into hadrons.
 - Coalescence mechanism: multiple overlapping quarks in position-velocity phase space combine to form hadrons.
- High multiplicity collisions are often accompanied by strangeness enhancement
 - ➤ In big systems (PbPb, AuAu): *s* quark enhancement mainly comes from gluon fusion in QGP.
 - ➤ In small systems (pp, pPb): s quarks enhancement mechanism is still debated (dynamical core-corona initialization, rope hadronization, color reconnection...).

Baryon/meson ratios are sensitive to hadronization.

Strange hadron/non strange hadron ratios are sensitive to hadronization and strangeness enhancement.

LHCb detector

• A single-arm spectrometer in the forward direction, charm & beauty factory

- \triangleright Vertex Locator (20 μ m IP resolution)
- \triangleright Tracking system ($\Delta p/p = 0.5 1.0\%$)
- \triangleright PID optimal for μ , p, K, π

$$\epsilon (K \rightarrow K) \sim 95\%$$

$$\epsilon(\mu \rightarrow \mu) \sim 97\%$$

> Flexible software trigger

VErtex LOcator

- VELO tracks: have hits in the VELO
- Back tracks: subset of VELO tracks, point away from the LHCb
- PV tracks: tracks used to reconstruct primary vertex

D_s^+/D^+ ratio in pPb collisions

Strangeness enhancement in QGP

Phys. Rev. Lett. 48, 1066

Strangeness enhancement in *pp* collisions.

 D_s^+/D enhancement in heavy ion collisions

Phys. Lett. B 827 (2022) 136986 Phys. Rev. Lett. 127 (2021) 092301

 D_s^+/D enhancement in pp or pPb collisions.

• The *p*Pb collisions at $\sqrt{s_{\text{NN}}} = 8.16$ (5.02) TeV LHCb data was taken in 2016 (2013) with asymmetric collision configuration.

Forward: $1.5 < y^* < 4$ (center mass system rapidity)

► Backward : $-5 < y^* < -2.5$

Backward collisions have higher multiplicity on average than forward collisions (\sim 1.6x).

D_s^+ and D^+ nuclear modification factor

$$R_{p\mathrm{Pb}}\left(p_{\mathrm{T}},y^{*}\right) \equiv rac{1}{A} rac{\mathrm{d}^{2}\sigma_{p\mathrm{Pb}}\left(p_{\mathrm{T}},y^{*}
ight)/\mathrm{d}p_{\mathrm{T}}\mathrm{d}y^{*}}{\mathrm{d}^{2}\sigma_{pp}\left(p_{\mathrm{T}},y^{*}
ight)/\mathrm{d}p_{\mathrm{T}}\mathrm{d}y^{*}}$$

- D_s^+ and D^+ production cross-section in pp collision at $\sqrt{s_{\rm NN}} = 8.16$ TeV is obtained from the interpolation of $\sqrt{s_{\rm NN}} = 5{,}13$ TeV. JHEP 06 (2017) 147 JHEP 03 (2016) 159
- R_{pPb} consistent with nPDFs calculations in the forward, lower than nPDFs calculations in the backward high p_{T} region.
- The main systematic uncertainty comes from the pp results and interpolation.

D_s^+ and D^+ forward-backward production ratio

$$R_{\rm FB}(p_{
m T},y^*) = rac{{
m d}^2 \sigma_{p{
m Pb}}(p_{
m T},+|y^*|)/{
m d}p_{
m T}{
m d}y^*}{{
m d}^2 \sigma_{{
m Pb}p}(p_{
m T},-|y^*|)/{
m d}p_{
m T}{
m d}y^*} \; ,$$

- $R_{\rm FB}$ shows a rising trend with $p_{\rm T}$. Consistent with nPDFs at low $p_{\rm T}$, larger than theoretical calculations at high $p_{\rm T}$.
- $R_{\rm FB}$ shows a slight dependence on y^* , consistent with nPDFs calculations.
- Potential explanations for backward production suppression :
 - > Weaker antishadowing effect in initial state.
 - \triangleright Higher energy loss for backward in final state (high $p_T \rightarrow \text{low } p_T$).

D_s^+/D^+ ratio vs p_T and y^* in pPb collisions

LHCb-PAPER-2023-006, in preparation LHCb-PAPER-2023-021, in preparation

Chenxi Gu, Quark Matter 2023

$$D_s^+(1969) = c\bar{s} D^+(1869) = c\bar{d}$$

- D_s^+/D^+ ratio shows no dependence on p_T .
- D_s^+/D^+ ratio is consistent with the result of LHCb in pp collisions within uncertainties.
- D_s^+/D^+ ratio is consistent with ALICE measurements with higher precision.
- Higher D_s^+/D^+ ratio for backward compared to forward may be due to coalescence contribution.
 - D_s^+/D^+ ratio also shows no dependence on p_T .
 - D_s^+/D^+ ratio is consistent with theoretical calculation (EPPS16, nCTEQ15) in forward.
 - The backward D_s^+/D^+ ratio is also slightly higher than the forward ratio.

D_s^+/D^+ ratio vs multiplicity in pPb collisions at $\sqrt{s_{\rm NN}} = 8.16$ TeV

- D_s^+/D^+ ratio increases with multiplicity.
- D_s^+/D^+ ratio enhancement is more pronounced in backward rapidity.
- On average, D_s^+/D^+ ratio is consistent with ALICE measurements.
- This implies a modification of charm quark hadronization in high multiplicity pPb collisions.

 $N_{\text{Tracks}}^{\text{PV}}$: Number of tracks used to reconstruct primary vertex

$\mathcal{Z}_c^+/\Lambda_c^+$ ratio vs p_T and y^* in pPb collisions at $\sqrt{s_{NN}} = 8.16$ TeV

- $\mathcal{E}_c^+/\Lambda_c^+$ ratio almost independent of $p_{\rm T}$, suggests that similar effects govern the production of \mathcal{E}_c^+ and Λ_c^+ .
- $\mathcal{Z}_c^+(2467) = usc$ $\Lambda_c^+(2286) = udc$ Both are reconstructed by $pK^-\pi^+$

- $\mathcal{E}_c^+/\Lambda_c^+$ ratio is consistent with theoretical calculation (EPPS16).
- The backward $\mathcal{E}_c^+/\Lambda_c^+$ ratio is slightly higher than the forward ratio.

arXiv:2305.06711 arXiv:2012.11462

\mathcal{E}_c^+/D^0 ratio vs p_T in pPb collisions at $\sqrt{s_{NN}} = 8.16$ TeV

 $D^{0}(1865) = c\bar{u}$

- D^0 cross-section at $\sqrt{s_{\rm NN}} = 8.16$ TeV is taken from another LHCb analysis. arXiv:2205.03936
- \mathcal{E}_c^+/D^0 ratio is consistent with theoretical calculation (EPPS16).
- \mathcal{E}_c^+/D^0 ratio is similar in forward and backward rapidity.

• The \mathcal{E}_c^0/D^0 ratios measured in pPb collisions from ALICE are significantly larger than that in pp collisions.

arXiv:2305.06711 arXiv:2012.11462

Λ_b^0/B^0 ratio vs p_T in pp collisions at $\sqrt{s} = 13$ TeV

$$\Lambda_b^0(5619) = udb$$

 $B^0(5279) = d\bar{b}$

- Λ_b^0/B^0 ratio (blue points) is consistent with previous LHCb pp, pPb results within uncertainties.
- The green solid curve uses the measured spectrum of baryons collected by Particle Data Group (PDG).
- The black dashed curve uses the expanded set of excited states that are expected by the Relativistic Quark Model (RQM).
- The enhancement of RQM relative to the PDG is attributed to the feed down from thus far unobserved excited *b* baryons.
- LHCb data tend to favor RQM at p_T <15 GeV/c

Bars = stat ⊕ sys Boxes = BR uncertainty

Λ_b^0/B^0 ratio vs multiplicity in pp collisions at $\sqrt{s} = 13$ TeV

- Λ_b^0/B^0 ratio increases with multiplicity.
- In the lowest multiplicity bin, Λ_b^0/B^0 ratio can reach the value in e^+e^- collisions.
- This indicates that coalescence emerges as an additional hadronization mechanism for baryons at high multiplicity events.

N_{tracks}: Number of track with hits in VELO

Λ_b^0/B^0 ratio vs p_T in pp collisions at $\sqrt{s} = 13$ TeV

- Λ_b^0/B^0 ratio significantly higher than e^+e^- result at low $p_{\rm T}$, and shows strong multiplicity dependence (coalescence may contribute here).
- Λ_b^0/B^0 ratio consistent with e^+e^- result at high $p_{\rm T}$, shows weaker multiplicity dependence (fragmentation dominant).
- Λ_b^0/B^0 ratio shows weaker multiplicity dependence on backward VELO tracks.

N_{tracks} : Subset of VELO tracks, point away from the LHCb

Bars = stat \oplus sys

 $p_{_{\mathrm{T}}}[\mathrm{GeV}/c]$

20

10

 $pp \sqrt{s} = 13 \text{ TeV}, 5.4 \text{ fb}^{-1}$

 $+N_{\text{tracks}}^{\text{back}}/\langle N_{\text{tracks}}^{\text{back}}\rangle_{\text{NB}} > 2$

+ $N_{\text{tracks}}^{\text{back}}/\langle N_{\text{tracks}}^{\text{back}} \rangle_{\text{NB}} < 1$

 $+1 < N_{\text{tracks}}^{\text{back}} / \langle N_{\text{tracks}}^{\text{back}} \rangle_{\text{NB}} < 2$

Global uncertainty: +19%

preliminary

Summary

- In pp and pPb collisions, LHCb have observed an enhancement of D_s^+/D^+ , Λ_b^0/B^0 as a function of multiplicity, with this enhancement being particularly pronounced in the low $p_{\rm T}$ region. It is qualitatively consistent with expectations arising from quark coalescence as an adjunct hadronization mechanism and strangeness enhancement.
- From a theoretical perspective, this baryon/meson ratio enhancement may also be caused by feed down from excited states. To test this hypothesis, further measurements from excited states are required.
- In $\sqrt{s_{\rm NN}} = 8.16$ TeV pPb collisions, The backward $\mathcal{E}_c^+/\Lambda_c^+$ ratio is slightly higher than the forward ratio. \mathcal{E}_c^+/D^0 ratio doesn't show a difference in the forward and backward. Further measurements are needed on these ratios in pp collisions.

D_s^+ and D^+ nuclear modification factor

D_s^+ and D^+ forward-backward production ratio

D_s^+/D^+ ratio in pPb collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

