

New measurements of inclusive jet suppression and jet v_2 in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV with ALICE

Nadine Alice Grünwald

(Physikalisches Institut Universität Heidelberg)
on behalf of the ALICE Collaboration
Quark Matter 2023, Houston Texas - 2023-09-05

Jets as probe of the QGP

Jet quenching effects from the interaction of high energetic partons with the medium:

Jet energy loss

Jet substructure modifications

Jet deflection

This talk

Talk by Hannah Bossi Tues. 05.09, 11:20-11:40 Talk by Jaime Norman Wed. 06.09, 9:50-10:10

→ Used to constrain properties of the structure and the dynamics of the QGP

This talk covers jet energy loss:

Measurement of inclusive jet suppression with a novel mixed-event approach

New preliminary

Charged-particle jet spectra in event-shape engineered Pb–Pb collisions

Submitted for publication arXiv:2307.14097

• Measurement of inclusive charged-particle jet v_2

New preliminary

Inclusive jet measurement

- Current ALICE jet R_{AA} measurement: low p_T reach achieved using Machine Learning (arXiv:2303.00592)
- Goal: extend to much lower p_T
- Measurement of reconstructed jets in heavy-ion collisions is challenging, due to huge non-uniform uncorrelated background
- Combinatorial ("fake") jet yield arising from random combination of products from soft (low Q²) interactions
- Smearing of p_{τ} of true jets arising from hard processes

Background correction methods:

- Use Mixed Events (ME) to determine the distribution of combinatorial jets
 - Purely statistical approach
 - ME successfully used at STAR (Phys.Rev.C 96 (2017) 2, 024905)
- Unfolding

Jet analysis with mixed event technique

- ALICE 2018 Pb-Pb data, $\sqrt{s_{NN}}$ = 5.02 TeV, 0-10% centrality
- How to create the ME:

Categorization of events into multiplicity, z-vertex, Ψ_2 , Ψ_3 & $p_{\rm T}^{\rm sum}$ (9600 categories)

- Assembling of full events
- Only one random track from each real event:
 - → by construction **no multi-hadron correlations**
- Same jet analysis for real events (same events = SE) and ME
 - Jet finder: anti- k_T , R = 0.3
 - Charged-particle jet reconstruction
 - "Jet wise" background subtraction: $p_{T,jet}^{reco} = p_{T,jet}^{raw} \rho A_{jet}$

- Leading track cut of 3 GeV/c and 4 GeV/c
- Inclusive distribution of partons at low p_T : many overlapping objects, cannot reconstruct as distinct jets
 - → Introduce a small bias to define jet object that can be interpreted in theory
 - \rightarrow Vary the bias to measure its effect & determine the p_{τ} region where the bias is negligible

- Leading track cut of 3 GeV/c and 4 GeV/c
- Inclusive distribution of partons at low p_T : many overlapping objects, cannot reconstruct as distinct jets
 - → Introduce a small bias to define jet object that can be interpreted in theory
 - → Vary the bias to measure its effect & determine the p₊ region where the bias is negligible
- Essential criterion for ME: Identical shape at the left-hand side

- Leading track cut of 3 GeV/c and 4 GeV/c
- Inclusive distribution of partons at low p_T : many overlapping objects, cannot reconstruct as distinct jets
 - → Introduce a small bias to define jet object that can be interpreted in theory
 - → Vary the bias to measure its effect & determine the p₊ region where the bias is negligible
- Essential criterion for ME: Identical shape at the left-hand side
- Subtraction of combinatorial background yield using ME

Raw correlated biased jet distribution , $p_T^{lead} > 3 \text{ GeV/}c$: SE-ME

ALI-PREL-550380

- Leading track cut of 3 GeV/c and 4 GeV/c
- Inclusive distribution of partons at low p_T : many overlapping objects, cannot reconstruct as distinct jets
 - → Introduce a small bias to define jet object that can be interpreted in theory
 - → Vary the bias to measure its effect & determine the p₊ region where the bias is negligible
- Essential criterion for ME: Identical shape at the left-hand side
- Subtraction of combinatorial background yield using ME
 - 1. ME procedure removes uncorrelated background yield
 - 2. Leading track p_{τ} cut generates countable objects
 - 3. Leading track p_T cut is decoupled from background suppression

Raw correlated biased jet distribution , $p_T^{lead} > 3 \text{ GeV/}c$: SE-ME

ALI-PREL-550380

Corrected charged-particle jet distributions, R = 0.3

- In addition to yield correction: Correction of p_T -smearing due to background and instrumental effects \rightarrow Unfolding
- Fully corrected quasi-incl. charged-particle jet distributions with $p_{\rm T}^{\rm lead} > 3 \; {\rm GeV}/c$ and $p_{\rm T}^{\rm lead} > 4 \; {\rm GeV}/c$
- Systematic uncertainties from ME, DCA, tracking efficiency & unfolding
- Measuring where the bias is small
- Effect of the leading track bias: **less than** 10% difference for $p_{T,iet} > 13.5 \text{ GeV/}c$
 - \rightarrow unbiased Pb-Pb at $p_{\text{T,iet}}$ > 13.5 GeV/c

Unbiased pp: ALICE collaboration, Phys. Rev. D 100, 092004, 2019. arXiv: 1905.02536 [nucl-ex].

Charged-particle jet R_{AA} with R = 0.3

$$R_{AA} = \frac{dN_{jets}^{AA}/dp_{T}d\eta}{\langle T_{AA}\rangle d\sigma_{jets}^{pp}/dp_{T}d\eta}$$

- R_{AA} is calculated relative to unbiased pp charged-particle jets ¹, R = 0.3
- Combined pp and Pb–Pb uncertainties
- Syst. + stat. uncertainties added in quadrature
 - → unbiased Pb-Pb R_{AA} down to 13.5 GeV/c (conservative estimate)

ALI-PREL-550396

Unbiased pp: ALICE collaboration, Phys. Rev. D, 100, 092004, 2019. arXiv: 1905.02536 [nucl-ex].

Comparison to previous ALICE $R_{\Delta\Delta}$

- Consistency with ALICE R_{AA} results with 2015 Pb—Pb data
- Lower in p_{τ} & smaller uncertainties

ALI-PREL-550400

Unbiased pp: ALICE collaboration, Phys. Rev. D, 100, 092004, 2019. arXiv: 1905.02536 [nucl-ex].

Comparison to RHIC R_{AA}

- ALI-PREL-550404
 Unbiased pp: ALICE collaboration, Phys. Rev. D, 100, 092004, 2019. arXiv: 1905.02536 [nucl-ex].
- **STAR:** *Phys.Rev.C* 102 (2020) 5, 054913

- First direct comparison of reconstructed jet suppression at LHC & RHIC in same kinematic range
- Unbiased Au+Au at $p_{\text{T,iet}} > 16 \text{ GeV/}c$
- Comparable R_{AA} between $\sqrt{s_{NN}}$ = 200 GeV and $\sqrt{s_{NN}}$ = 5.02 TeV
 - Yield suppression is combined effect of spectrum shape and energy loss
 - Inclusive jet spectrum much harder at LHC than RHIC
 - q/g composition is different at LHC (gluon-dominated) & RHIC (larger quark fraction)
- → Same R_{AA} does not mean same energy loss

• Models describe R_{AA} at high p_{T} but disagree at low p_{T}

ALI-PREL-556747

Unbiased pp: ALICE collaboration, Phys. Rev. D, 100, 092004, 2019. arXiv: 1905.02536 [nucl-ex].

JETSCAPE: JETSCAPE Collaboration, Phys. Rev. C 107, 034911, 16 March 2023, arXiv:1903.07706 **Mehtar-Tani et. al:** *Phys.Rev.Lett.* 127 (2021) 25, 252301, arXiv:2101.01742

JEWEL: JHEP 1707 (2017) 141

MARTINI: Phys. Rev. C 107 (2023) 3, 034908, arXiv:2212.05944

• Models describe R_{AA} at high p_{T} but disagree at low p_{T}

ALI-PREL-556747

Unbiased pp: ALICE collaboration, Phys. Rev. D, 100, 092004, 2019. arXiv: 1905.02536 [nucl-ex].

JETSCAPE: JETSCAPE Collaboration, Phys. Rev. C 107, 034911, 16 March 2023, arXiv:1903.07706 **Mehtar-Tani et. al:** *Phys.Rev.Lett.* 127 (2021) 25, 252301, arXiv:2101.01742

JEWEL: JHEP 1707 (2017) 141

MARTINI: Phys.Rev.C 107 (2023) 3, 034908, arXiv:2212.05944

ALI-PREL-556747

Unbiased pp: ALICE collaboration, Phys. Rev. D, 100, 092004, 2019. arXiv: 1905.02536 [nucl-ex].

• Models describe $R_{\rm AA}$ at high $p_{\rm T}$ but disagree at low $p_{\rm T}$

 JEWEL recoils on/off: inclusive and coincidence give opposite pictures

JETSCAPE: JETSCAPE Collaboration, Phys. Rev. C 107, 034911, 16 March 2023, arXiv:1903.07706

Mehtar-Tani et. al: Phys.Rev.Lett. 127 (2021) 25, 252301, arXiv:2101.01742

JEWEL: JHEP 1707 (2017) 141

MARTINI: Phys. Rev. C 107 (2023) 3, 034908, arXiv:2212.05944

Pathlength dependent energy loss

Energy loss mechanism: Radiative and collisional
 Mechanisms show different pathlength
 dependence

Shorter in-plane axis compared to out-of-plane

axis is expected out-o

 Event-plane dependence of suppression can provide new insight into mechanisms underlying jet energy loss

16

• Limited by medium fluctuations

Event-shape engineering

New arXiv: 2307.14097

 Event-shape engineering (ESE): Classification of events according to their anisotropy in a centrality class

$$Q_{2} = \left(\sum_{i} w_{i} \cos(2\varphi_{i}), \sum_{i} w_{i} \cos(2\varphi_{i})\right)$$
azimuthal angle

$$q_2 = \frac{|Q_2|}{\sqrt{M}}$$
Multiplicity

• ALICE 2018 Pb–Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$, 30–50 % semi-central

ALI-PUB-545088

ESE and jets in Pb-Pb

New arXiv: 2307.14097

Azimuthally averaged

- Combine jet measurement with information from underlying event
- Jet reconstruction with anti- $k_{\rm T}$ and R = 0.2& R = 0.4
- Unfolding & efficiency corrections
- Only small difference between q_2 -large & q_2 -small in the azimuthally averaged measurement

ALI-PUB-54510

Event-plane angles and ESE

New arXiv: 2307.14097

Azimuthally differential

- Ratios of **out-of-plane/in-plane** jet spectra for q_2 large & small events
 - → Suppression of out-of-plane jets
 - → Consistency with expectation from Trajectum calculations: ESE maximizes the pathlength differences

Clear separation below p_{T.iet} < 50 GeV/c

• Dominated by systematics at low $p_{\mathrm{T,jet}}$

$$\mathbf{v}_2 = \frac{\mathbf{N}_{in} - \mathbf{N}_{out}}{\mathbf{N}_{in} + \mathbf{N}_{out}}$$

- Suppression of out-of-plane jets
- Larger **positive charged-particle jet** v_2 at low $p_{T,jet}$
- Consistency of this measurement with ATLAS results within the uncertainties between 70 and 110 GeV/c

Poster by Takuya Kumaoka

Summary

Measurements to address the jet energy loss

- **ME technique** can address **background yield** problem in heavy-ion jet measurements
- \rightarrow Unbiased charged-particle jet $R_{\Delta\Delta}$ down to 13.5 GeV/c
- → First direct comparison of jet suppression at RHIC & LHC
- → Comparison to h-jet: new tools to explore jet quenching mechanisms

- ESE + event-plane angle information are promising techniques to constrain pathlength dependence of jet quenching
 - ightharpoonup Consistency with expectation of **pathlength dependent suppression** for low to mid p_{τ}

- Positive charged-particle jet v_2 at $\sqrt{s_{NN}}$ = 5.02 TeV
 - → Suppression of out-of-plane jets

Backup

Corrections for p_{T} -smearing

- In addition to yield correction: Correction of p_{T} -smearing due to background and instrumental effects \rightarrow **Unfolding**
- **Instrumental effects**: Corrections for efficiency & p_T resolution
- Background effects: Correction for local fluctuations
- Response matrix calculation with embedding of PYTHIA jets into SE
- ROOT unfolding framework RooUnfold with Bayesian unfolding method & 7 iterations
- Prior: PYTHIA particle level
- Additional correction after unfolding: Jet reconstruction efficiency

ALI-PREL-55038

- **JETSCAPE**: Framework for pp and heavy-ion event simulation and Bayesian inference
- Jet interactions, no medium response:
 - MATTER: High virtuality shower
 - MARTINI: Low virtuality shower. Includes elastic scattering processes similar to LBT and radiative energy loss according to AMY formalism
- Jet interactions with medium response:
 - LBT: Transport of parton in QGP is described by linear Boltzmann equation. Medium particles can become part of the jet due to scattering: "recoiled partons"
 - JEWEL: PYTHIA based, microscopic response, energy-momentum locally conserved
 - **Hybrid**: PYTHIA based, hard (soft) jet-medium interaction based on DGLAP evolution (AdS/CFT)
- Mehtar-Tani et. al: Analytic calculation based on BDMPS/GLV and hydrodynamics

Event-plane angles and ESE

- Pathlength differences not predicted in theory when considering only event shapes
 - → Add event-plane information

Prediction of greater in- vs.
 out-of-plane differences for
 q₂-large events than for
 q₂-small events

Beattie, Nijs, Sas, van der Schee, Phys. Lett. B 836 (2023) 137596