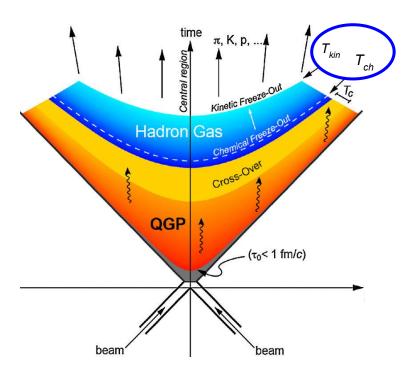
Exploring the hadron gas phase of relativistic heavy-ion collisions with ALICE

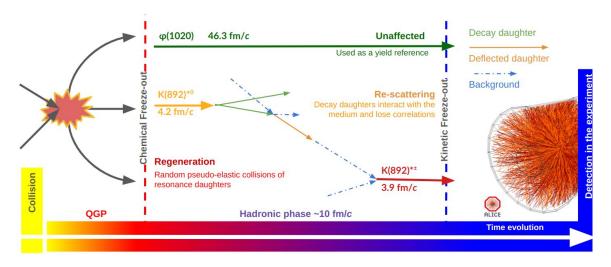
Neelima Agrawal, on behalf of the ALICE collaboration University and INFN Bologna, Italy

QM 2023, September 3-9, 2023, Houston Texas



High energy collision and Evolution

- At the LHC, quark-gluon plasma (QGP) state is created in high energy heavy-ion collisions.
- After hadronization, all inelastic collisions stops, fixed chemical composition of the system (chemical freeze-out; T_{ch}≈ 150 - 160 MeV).
- The hadron gas continues to expand until all interactions cease (kinetic freeze-out; at T_{kin}≈ 100 - 120 MeV), fixed momentum distributions of particles.
- The duration of the hadron-gas phase between chemical freeze-out and kinetic freeze-out is of the same order of magnitude as of the resonance lifetimes (τ ~ few fm/c).
- Afterwards, particles fly towards detectors as free hadrons and can be measured.

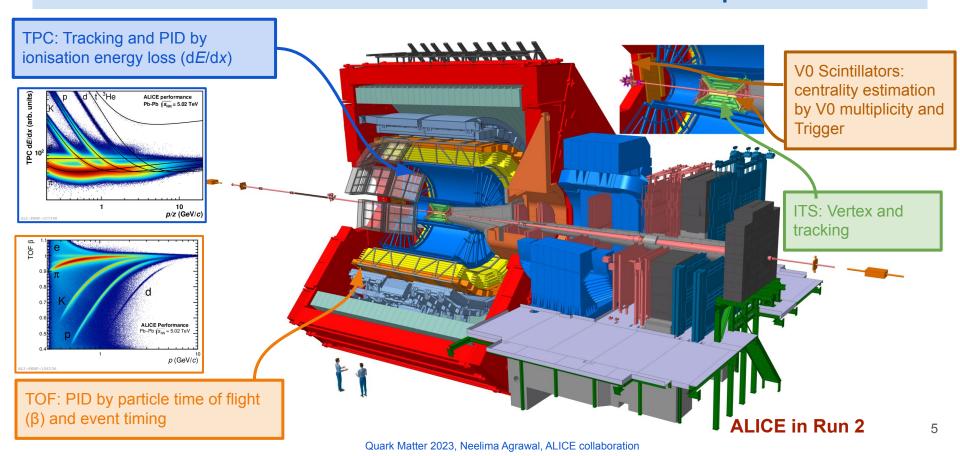

Light-Flavour Hadronic Resonances in ALICE

Resonance	ρ(770)	K(892) [±]	K(892) ⁰	f ₀ (980) ⁰	$\Sigma(1385)^{\pm}$	Ξ(1820) [±]	Λ(1520)	Ξ(1530) ⁰	f ₁ (1285)	Ф(1020)
Decay	ππ	$K_s^0 \pi$	Κπ	ππ	Λπ	ΛK	рK	Ξπ	$K_s^0 K\pi$	KK
B. R. (%)	100	33.3	66.6	46	87	unknown	22.5	66.7	2. 25	48.9
Quark constituents	$\frac{u\bar{u}+d\bar{d}}{\sqrt{2}}$	us, ūs	ds, ās	unknown	uus, dds	uss	uds	uss	unknown	ss
$\tau(fm/c)$	1.3	3.6	4. 2	large unc.	5 - 5.5	8.1	12.6	21.7	22.7	46. 4

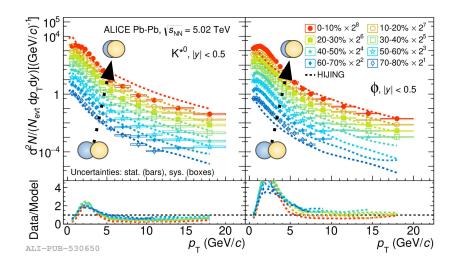
More by S. Padhan on 5th Sept, 11:40

- Short lifetimes, comparable to the one of the hadronic gas phase ($\tau \sim \text{few fm/}c$)
 - → suitable probe to study the properties of the hadronic phase in heavy-ion collisions.
- ALICE is the perfect detector to study these resonances
 - \rightarrow A rich set of data collected in pp, p-Pb, Xe-Xe and Pb-Pb collisions at high energy ($\sqrt{s_{\text{NIN}}}$ TeV) over the years.
 - → Extensive PID capabilities from low momentum region (~ 150 MeV) to high momentum region.

Resonance as probe of the hadronic phase

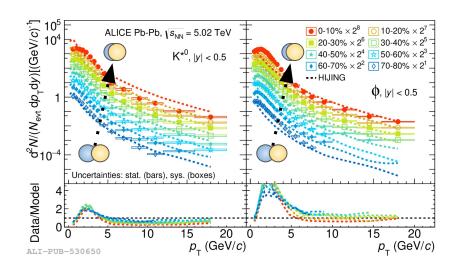

Hadronic phase (\sim 10 fm/c) can be probed with hadronic resonances ($\tau \sim$ few fm/c).

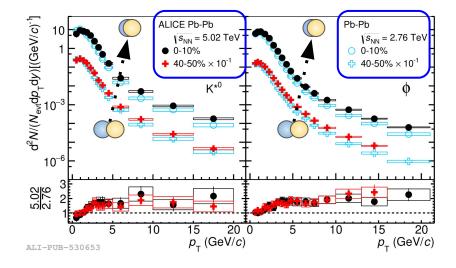
Reconstructible yield affected by


- → Regeneration: Pseudo-elastic scattering of decay daughters, gain resonance (e.g. $Kp \rightarrow \Lambda(1520) Kp$)
- → Rescattering: elastic or pseudo-elastic scattering smears out mass peak, looses resonance

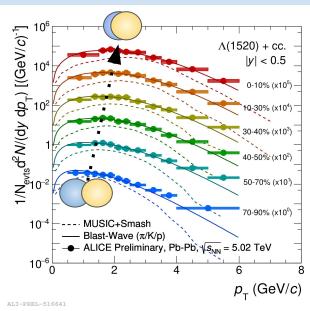
- Final yield at kinetic freeze-out depends on
 - \rightarrow chemical freeze-out temperature (T_{ch}),
 - → duration of hadronic phase,
 - → lifetime of resonance
 - → scattering cross section of decay products
- Resonance yield to stable particle with similar quark content encodes the effects of such interactions

The ALICE detector: excellent PID at low- p_{T}



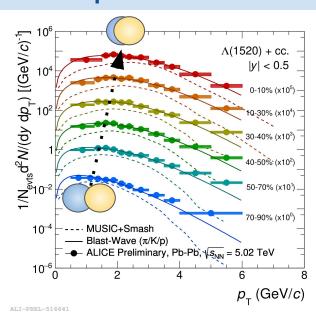

K*(892) and ϕ (1020), p_{T} -spectra in heavy-ion collisions

- The p_{T} -spectra of K*(892) and ϕ (1020) measured in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$
 - \rightarrow fine centrality intervals, from 0-10% to 70-80%.
 - \rightarrow hardening of the p_T -spectrum from peripheral to central collisions for both particles.


K*(892) and ϕ (1020), p_{T} -spectra in heavy-ion collisions

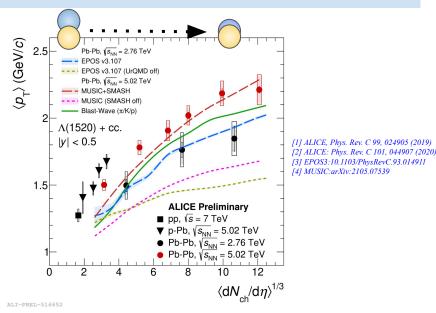
- The p_T -spectra of K*(892) and ϕ (1020) measured in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$
 - \rightarrow fine centrality intervals, from 0-10% to 70-80%.
 - \rightarrow hardening of the p_T -spectrum from peripheral to central collisions for both particles.
- The p_T -spectra ratio of 5.02 TeV to 2.76 TeV \rightarrow yield increase of both K*(892) and ϕ (1020) in Pb-Pb collisions from $\sqrt{s_{NN}} = 2.76$ TeV to 5.02 TeV. \rightarrow ratio of p_T -spectra from two energies increases with p_T
 - ightarrow ratio of $p_{\rm T}$ -spectra from two energies increases with $p_{\rm T}$ and tend to saturate at high $p_{\rm T}$ for both mesons.

$\Lambda(1520)$, p_{T} -spectra and $\langle p_{T} \rangle$ in heavy-ion collisions

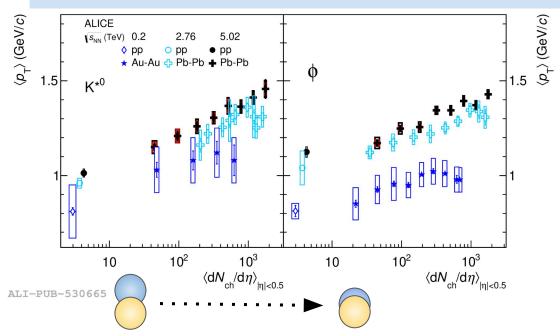


[1] ALICE, Phys. Rev. C 99, 024905 (2019) [2] ALICE: Phys. Rev. C 101, 044907 (2020) [3] EPOS3:10.1103/PhysRevC.93.014911 [4] MUSIC:arXiv:2105.07539

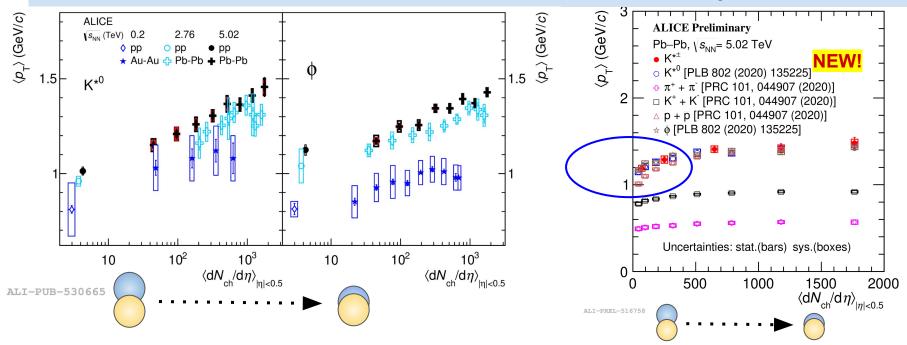
The spectral shapes show


- \rightarrow good agreement with **Blast-Wave** (π /K/p fits).
- ightarrow close to MUSIC hydrodynamic models [3] with SMASH afterburner predictions at low $p_{\rm T}$, diverge at high $p_{\rm T}$.
- → MUSIC slightly underestimates the data as model underestimates overall strangeness production at midrapidity.

$\Lambda(1520)$, p_{T} -spectra and $\langle p_{T} \rangle$ in heavy-ion collisions

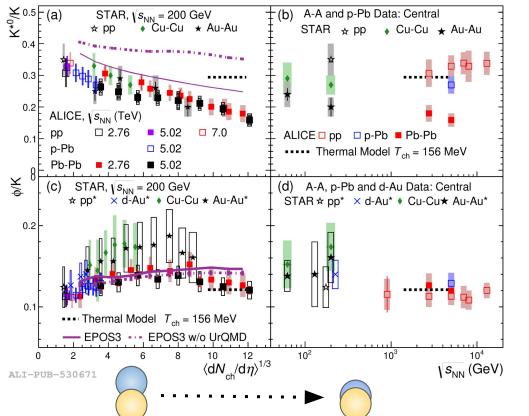

The spectral shapes show

- \rightarrow good agreement with **Blast-Wave** (π /K/p fits).
- \rightarrow close to MUSIC hydrodynamic models [3] with SMASH afterburner predictions at low p_{τ} , diverge at high p_{τ} .
- → MUSIC slightly underestimates the data as model underestimates overall strangeness production at midrapidity.


- The <p_T> values increase from peripheral to central collisions (~47% higher)
 - \rightarrow higher than Pb-Pb 2.76 TeV values and Blast-wave model predictions ($\pi/K/p$) [2].
 - → MUSIC[4] and EPOS3 [3] models give better predictions with hadronic phase modelling (SMASH [4] and UrQMD).
 - \rightarrow When **SMASH** is turned **off**, the <*p*_T> is underestimated.

K^* and φ, mean transverse momentum, $< p_T >$

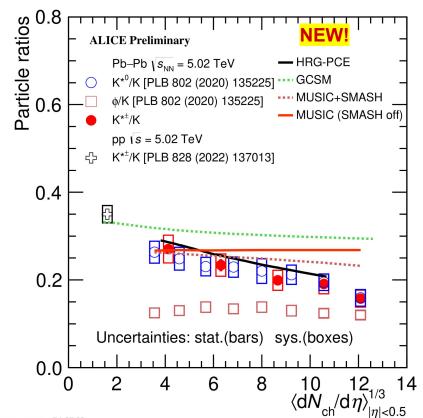
- The $\langle p_{\mathsf{T}} \rangle$ values
 - → increase towards higher centrality/multiplicity
 - → 5.02 TeV values are higher than 2.76 TeV results
 - → energy dependence between RHIC and LHC energies


K^* and φ, mean transverse momentum, $< p_T >$

- The $\langle p_{\mathsf{T}} \rangle$ values
 - → increases towards higher centrality/multiplicity
 - → 5.02 TeV values are higher than 2.76 TeV results
 - → energy dependence between RHIC and LHC energies

- The $\langle p_{\mathsf{T}} \rangle$ values of particles follow mass ordering
 - → Indicative of radial flow in central collisions
 - → Violated in peripheral collisions, $\langle p_T \rangle$ ($\phi > p$)

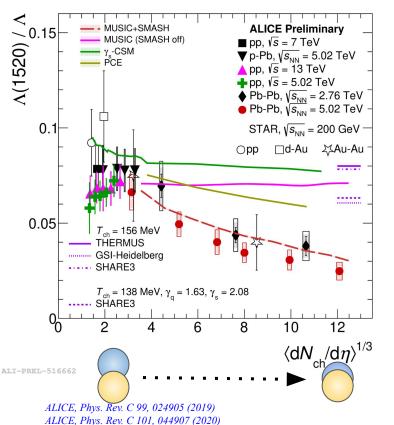
K*/K and φ/K ratio; multiple collision systems & energies



- K*/K shows clear suppression
 - →going from pp, p-Pb and peripheral Pb-Pb collisions to central Pb-Pb
 - ightarrow EPOS3 with UrQMD overestimates the data but reproduces the suppression trend
- φ/K shows no suppression
 - →almost constant behaviour
 - → EPOS3 reproduces the data
- K* suppression by dominance of rescattering over regeneration
- rescattering not significant for φ

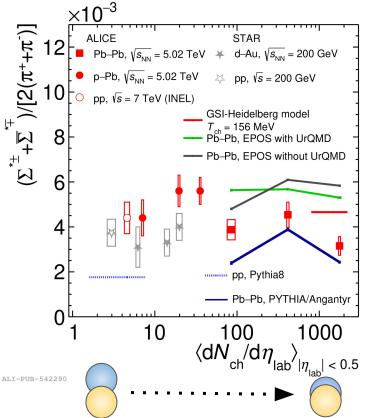
$$\rightarrow \tau(\phi) >> \tau(K^*)$$

ALICE, Phys. Rev. C 106 (2022) 034907 EPOS3: 10.1103/PhysRevC.93.014911 Thermal Model: J. Phys.: Conf. Ser. 509, 012019 (2014).


K*±/K measurements in heavy-ion collision

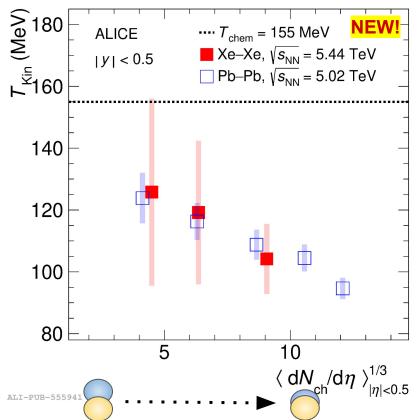
- K*/K shows clear suppression
 - →going from pp, p-Pb and peripheral Pb-Pb collisions to central Pb-Pb
 - ightarrow EPOS3 with UrQMD overestimates the data but reproduces the suppression trend
- φ/K shows no suppression
 - →almost constant behaviour
 - → EPOS3 reproduces the data
- most favoured explanation of K* suppression is dominance of rescattering over regeneration
- re-scattering is not significant for φ
 → τ(φ) >> τ(K*)
- K**/K shows similar suppression trend and agrees with K*/K values

ALICE: arXiv:2308.16119


Λ(1520)/Λ ratio; multiple collision systems & energies

- The Λ(1520)/Λ yield ratio is suppressed in central collisions (0-10%)
 - →compared to the peripheral Pb-Pb, p–Pb, pp collisions and statistical hadronization models predictions
 - →lower than 70-90% peripheral Pb–Pb at 7.1σ level.
- MUSIC with SMASH afterburner
 - →reproduces the multiplicity suppression trend, better agreement.
- MUSIC without SMASH afterburner
 - → first ever prediction without an afterburner, gives a flat curve.
 - → matching to peripheral 70-90% Pb-Pb collisions & near to pp values.
- Thermal models do not reproduce the suppression trend.

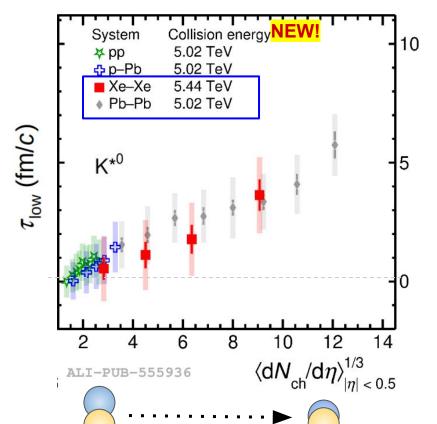
PCE: Phys.Rev.C 102 (2020) 2, 024909 CSM: Phys.Rev.C 100 (2019) 5, 054906 EPOS3: 10.1103/PhysRevC.93.014911 MUSIC: arXiv:2105.07539


Σ*±/π± ratio; multiple collision systems & energies

- Yield Σ(1385)[±] is measured in three centrality classes (0-10%, 30-50%, 50-80%) in Pb-Pb collisions at 5.02 TeV.
- The p_T-integrated Σ*±/π± yield ratio is shown
 → the ratio is suppressed in central collisions (0-10%) if compared to the values observed in peripheral collisions, p-Pb, pp collisions and predictions from statistical hadronisation models.
- EPOS3 with UrQMD afterburner overestimates the data.
- Suppression at a level of 3.6σ in central Pb-Pb collisions (0-10%) with respect to thermal model calculation.

ALICE, Eur. Phys. J. C 83 (2023) 351 ALICE, arXiv:2308.16116

Findings on T_{kin} , Xe-Xe collisions

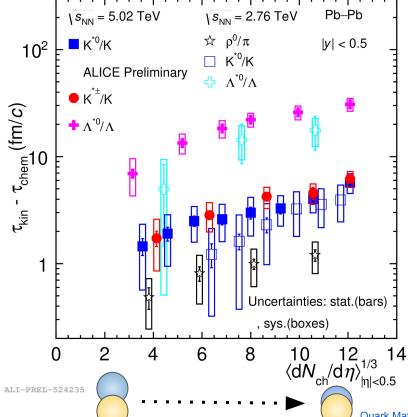


- Kinetic freeze-out temperature is measured in Xe-Xe (new) and Pb-Pb collisions
 - →Estimated T_{kin} value ≈ 100 120 MeV
 - \rightarrow used hadron resonance gas in partial chemical equilibrium, **HRG-PCE**
 - \rightarrow by model fit to the measured yield of π , K, p, ϕ , K* and their anti-particles for different centrality classes

ALICE: arXiv:2308.16115

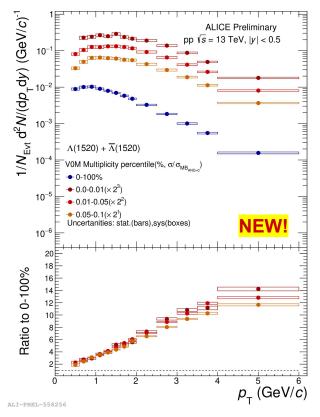
HRG-PCE: Phys. Rev. C 102 no. 2, (2020) 024909

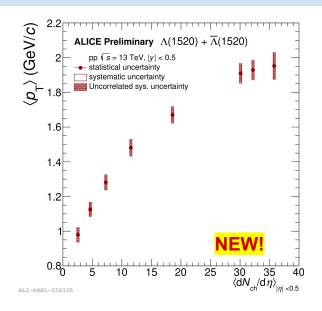
Findings on hadronic phase lifetime, Xe-Xe collisions

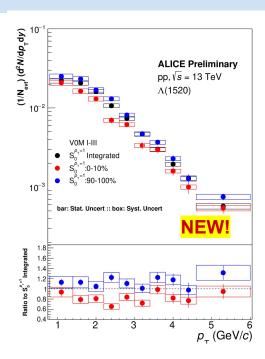


Lower limit of the timespan between chemical and kinetic freeze-out is estimated by the exponential law:

$$r_{\rm kin} = r_{\rm chem} \times \exp(-(\tau_{\rm kin} - \tau_{\rm chem})/\tau_{\rm res})$$

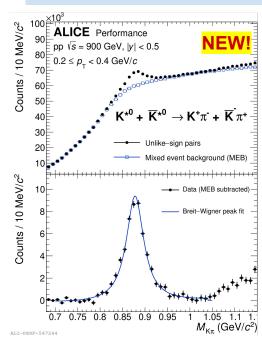

- \rightarrow r_{kin} = measured yield ratios in heavy-ion (Pb-Pb) collisions
- \rightarrow r_{chem} = measured yield ratios in pp collisions
- \rightarrow _{res} = lifetime of the resonance particle
- Assumptions
 - →simultaneous freeze-out of all the particles.
 - → Negligible regeneration of resonances.
- Xe-Xe values in agreement with Pb-Pb collisions values.
- smoothly increases with centrality/multiplicity.

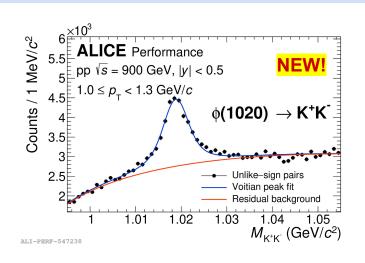

Findings on hadronic phase lifetime

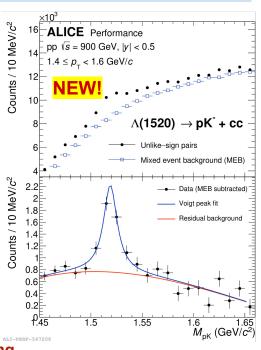


- Estimated hadronic phase life-time in Pb-Pb collisions at 5.02 and 2.76 TeV
- Measurement uses K*, Λ* and ρ⁰ results
- Lifetime of the hadronic phase smoothly increases with centrality/multiplicity.
- Confirmed signature of presence of hadronic medium lasting long enough to reduce the reconstructable yield of short-lived resonances

New results in pp collisions in run 2 data

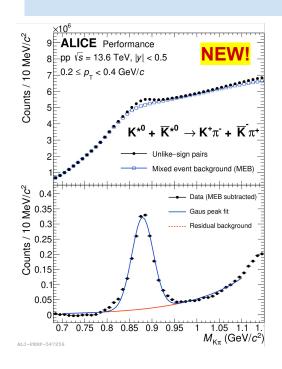






- High multiplicity, pp@ 13 TeV
 - → The spectral shapes get harder from low to high multiplicity class.
 - \rightarrow Mean p_{T} increases and saturates for high multiplicity classes.
 - → Spherocity analysis, using large data sample to perform differential analysis.

ALICE measures resonances in Run 3



Run 3 resonance measurements are ongoing in full swing

- \rightarrow Extracted signals for K*(890), ϕ (1020) and Λ (1520).
- → ALICE performance is good in Run 3
- → full analysis for each particle is under progress

ALICE measures resonances in Run 3

Stay tuned for more results...

Summary

- A complete set of resonances is measured in ALICE
 - → exploited full Run 2 statistics by using pp, p-Pb, Xe-Xe and Pb-Pb collision data at various centre-of-mass energies
- Highlights the suppression of short-lived resonances
 - → no suppression of longer lifetime resonance
- Estimated Kinetic freeze-out temperature in heavy ion collisions in Xe-Xe at 5.44 TeV and Pb-Pb at 5.02 TeV (100 120 MeV)
- Measured lifetime of the hadronic phase by the yields of various short-lived resonances
 - → Increases with centrality/multiplicity
 - → Confirmed signature of presence of hadronic medium lasting long enough to reduce the reconstructable yield of short-lived resonances in heavy-ion collisions
- ALICE shines in Run 3 with its good performance
 - → already exhausting Run 3 data for measurements on resonances

Thank you very much for your attention...

Acknowledgment:

"The speaker is supported by received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme, grant agreement No. 950692."