

Bulk flow and correlation measurements at LHCb

Cheuk-Ping Wong [cwong1@bnl.gov] on behalf of the LHCb Collaboration

09-05-2023 / Quark Matter 2023 / Houston, Texas

Bose-Einstein correlations (BEC) Momentum correlations

Cheuk-Ping Wong

Bose-Einstein correlations (BEC) Momentum correlations

- Study the space-time properties of the particle-emitting source
- Small systems, like *p*Pb, with a shorter lifetime provide better probes to the early system dynamics and the initial geometry
- The forward region may contain information
 of quantum interference effects

Cheuk-Ping Wong

Bose-Einstein correlations (BEC) Momentum correlations

- Study the space-time properties of the particle-emitting source
- Small systems, like *p*Pb, with a shorter lifetime provide better probes to the early system dynamics and the initial geometry
- The forward region may contain information of quantum interference effects

- Study the evolution and the transport properties of the QGP
- Forward region is dominated by the "cooler" hadronic phase
 - → Test hydrodynamic and transport models with the non-equilibrium hadronic phase

Complementary to other LHC results at mid rapidity

Cheuk-Ping Wong

Bose-Einstein correlations (BEC) Momentum correlations

- *p*Pb collisions at 5 TeV
 - 63M events
 - $\int Ldt = 1.06 \text{ nb}^{-1}$
- Pbp collisions at 5 TeV
 - 57M events
 - $\int Ldt = 0.52 \text{ nb}^{-1}$
- Same-sign charged $\boldsymbol{\pi}$

- PbPb collisions at 5 TeV
 - 3B events
 - $\int Ldt = 214 \ \mu b^{-1}$
- Nonidentified charged hadrons

LHCb detector

Bose-Einstein correlations in *p*Pb and Pb*p* collisions

Cheuk-Ping Wong

pPb / Pbp 5 TeV arXiv:2306.09755

BEC of same-sign π

rookhaven Kor Los Alamos

- Same-sign (SS) charge π correlations
- Detector acceptance correction using eventmixing technique
- Use opposite-sign (OS) π pairs to extract nonfemtoscopic background

pPb / Pbp 5 TeV arXiv:2306.09755

BEC of same-sign π

*p*Pb / Pb*p* 5 TeV arXiv:2306.09755

BEC of same-sign π

haven Kos Alamos

- Same-sign (SS) charge π correlations
- Detector acceptance correction using eventmixing technique
- Use opposite-sign (OS) π pairs to extract nonfemtoscopic background
- Parameterize using Bowler–Sinyukov formalism:

 $\sqrt{-(k_1 - k_2)^2}$ $C_2(Q) = N \Big[1 - \lambda + \lambda K(Q) \times \Big(1 + e^{-|RQ|} \Big) \Big] \times \Omega(Q)$ Coulomb interaction term Nonfemtoscopic

for point-like source

Nonfemtoscopic background contributions Determined using OS pairs

- *R* : correlation radius
 → effective size of the particle emitting source
 λ : intercept parameter
 - \rightarrow correlation strength

Cheuk-Ping Wong

Correlation radius vs multiplicity

 $\sqrt{-(k_1 - k_2)^2}$ $C_2(Q) = N \Big[1 - \lambda + \lambda K(Q) \times \Big(1 + e^{-|RQ|} \Big) \Big] \times \Omega(Q)$ Coulomb interaction term for point-like source Nonfemtoscopic background contribution

Nonfemtoscopic background contributions Determined using OS pairs

pPb / Pbp

arXiv:2306.09755

5 TeV

- N_{VELO} : charged particle multiplicity measured using VELO
- The correlation radius increases with the charged-particle multiplicity
- $R \propto \sqrt[3]{N_{\text{VELO}}}$
- R of Pbp system is systematically higher than pPb and pp systems but the uncertainties prevent concise conclusions

Intercept parameter vs multiplicity

• The intercept parameter decreases with the charged-particle multiplicity

• Stronger correlation in high multiplicity events

12

pPb / Pbp

Determined using OS pairs

arXiv:2306.09755

5 TeV

Forward particle flow in PbPb at 5 TeV via two-particle angular correlations

Cheuk-Ping Wong

Forward charged-hadron correlations in small systems

- Detector acceptance correction using event-mixing technique
- Noticeable near-side ridge in Pbp compared to pPb events

Cheuk-Ping Wong

pPb / Pbp

PLB 762 (2016) 473

5 TeV

Forward charged-hadron correlations in small and large systems

PbPb 5 TeV

LHCB-PAPER-2023-031

Forward charged-hadron correlations in PbPb at 5 TeV

Cheuk-Ping Wong

ookhaven[•] Los Alamos

- More results from 75-84% centrality class
- Centrality class above 84% is excluded due to potential UPC contamination
- Require $|\Delta \eta| > 1$ to avoid the short-range correlations
- Fourier series fit with the first, second and the third terms of harmonics $v_n(p_{Ta}) = V_n(p_{Ta}, p_{Tb})/v_n(p_{Tb})$
- First order flow harmonics coefficients are not reported due to factorization breaking in two-particle correlations analysis

16

PbPb

In preparation

5 TeV

HCB-PAPER-2023-03

First forward measurement of charged hadron $v_n(p_T)$ at LHCb

Cheuk-Ping Wong

National Laboratory

PbPb collisions/simulations at 5 TeV

	Centrality class		Pseudorapidity
HCb	65-75%	75-84%	$2 \le \eta \le 4.9$
ATLAS	60-70%	70-80%	$ \eta < 2.5$
AMPT	65-75%	75-84%	$2 \le \eta \le 4.9$

PbPb

5 TeV

LHCB-PAPER-2023-031

PbPb 5 TeV LHCB-PAPER-2023-031 In preparation

- v₂ increases at low p_T, peak at about
 2 GeV, and then decreases at high p_T
- v_2 seems to plateau at $p_T > 5$ GeV

LHCB-PAPER-2023-031 In preparation

5 TeV

PbPb

- v₂ increases at low p_T, peak at about
 2 GeV, and then decreases at high p_T
- v_2 seems to plateau at $p_T > 5$ GeV
- Rising v₂ at high p_T in 75-84% centrality may be due to non-flow contributions

LHCB-PAPER-2023-031 In preparation

5 TeV

PbPb

- v_2 increases at low p_T , peak at about 2 GeV, and then decreases at high p_T
- v_2 seems to plateau at $p_T > 5$ GeV
- Rising v₂ at high p_T in 75-84% centrality may be due to non-flow contributions
- No noticeable centrality dependence of forward v₂

LHCB-PAPER-2023-031 In preparation

5 TeV

PbPb

- v₂ increases at low p_T, peak at about
 2 GeV, and then decreases at high p_T
- v_2 seems to plateau at $p_T > 5$ GeV
- Rising v₂ at high p_T in 75-84% centrality may be due to non-flow contributions
- No noticeable centrality dependence of forward v₂
- Unlike v₂, v₃ continues to decrease and reach below zero

PbPb 5 TeV LHCB-PAPER-2023-031 In preparation

- LHCb results in the forward region shows weaker v_n compared to
 ATLAS results in centrality
 pseudorapidity
 → Forward region is dominated
 by hadronic phase leading to
 weaker flow
- AMPT simulations overestimate v_n
 → tuning on parton density and v_n model

Potential future flow measurements at LHCb

Cheuk-Ping Wong

Cheuk-Ping Wong

Charge asymmetry in chiral magnetic effects

Nature vol3 (Jan 2021) 59

 $\frac{\pi}{2}$, near-side p

У.

Positively and negatively charged particles are emitted in opposite directions due to chiral magnetic effects

25

 $r < \frac{\pi}{2}$, near-side peak

r-side peaf

Charge asymmetry in chiral magnetic effects

In the case of charge asymmetry
 → non-zero Δv₁ between positively
 and negatively charged hadrons

Positively and negatively charged particles are emitted in opposite directions due to chiral magnetic effects

У.

Nature vol3 (Jan 2021) 59

26

 $<\frac{\pi}{2}$, near-side pe

-side pear

Charge asymmetry in chiral magnetic effects

- In the case of charge asymmetry \rightarrow non-zero Δv_1 between positively and negatively charged hadrons
- v_1 is stronger in the forward region
- Forward results will help reduce
 the uncertainty

Positively and negatively charged particles are emitted in opposite directions due to chiral magnetic effects

Cheuk-Ping Wong

 $<\frac{\pi}{2}$, near-side

-side pear

Flow in fixed-target collisions

- Comparable energy scale to the RHIC operation range
- intermediate system size between pA and AA collisions

Huge opportunity!

- <u>SMOG results K. Mattioli, today at 4:30 pm, Ballroom C</u>
- SMOG2 commissioning S. Mariani, 09/06/23 at 1:20 pm, Ballroom D

- Study temperature dependence of η/s
- Study initial state effects

Flow in fixed-target collisions

• Comparable energy scale to the RHIC operation range

Huge opportunity!

• intermediate system size between *p*A and AA collisions

- <u>SMOG results K. Mattioli, today at 4:30 pm, Ballroom C</u>
- SMOG2 commissioning S. Mariani, 09/06/23 at 1:20 pm, Ballroom D

- Study temperature dependence of η/s
- Study initial state effects:
 v_n is sensitive to light nuclei's nuclear structure in PbA collisions

Cheuk-Ping Wong

Summary

Bose-Einstein correlations of same-sign pion

- System size (intercept parameter) increases (decreases) with event multiplicity
- Hints to larger system size in Pbp compared to pPb and pp

First forward measurement of charged hadron $v_n(p_T)$ at LHCb

- Weaker flow in the forward region compared to mid-rapidity results by ATLAS
 → hadronic phase v.s. partonic phase
- Transport models may require tuning in the forward region

Expand LHCb physics program with flow

- Small-x physics: initial state effects, CGC
- Forward direction: chiral magnetic effects
- Small system: temperature dependence of QGP transport properties initial state effects

Backup

Beam Configurations

Cheuk-Ping Wong

Beam Configurations

Cheuk-Ping Wong