Non-Gaussian Fluctuations in Relativistic Fluids

Xin An

Based on work with Basar, Stephanov and Yee Sep 5 2023, Houston

Motivation

Filling the gap

Collision event simulation at LHC (CERN)

We are using *non-equilibrium* techniques
to explore the *equilibrium* QCD phase structure
via fluctuations!

Fluctuations in equilibrium

• Thermal fluctuations: systems possess *large* number of DOFs; *small* deviation from Gaussian due to CLT.

Thermal equilibrium is extremely boring.

 Non-Gaussian fluctuations become more important when systems possess smaller number of DOFs (e.g., closer to the critical point).

Fluctuations out of equilibrium

Hydrodynamic fluctuations:

large number of locally thermalized cells comoving with fluid $\ell_{\mathrm{mic}} \sim T^{-}$ scale hierarchy hydro cell micro scale $\ell_{\text{mic}} \ll b < \ell \ll L$ $T \gg \Lambda > q \gg k$ fluctuation scale $L \sim k^{-1}$ system scale fluctuations *not* equilibrated at *large* scales

evolution described by a set of conservation equations

$$\partial_t \psi = \nabla \cdot (\text{flux}[\psi]) \quad \text{where} \quad \psi = (n, \epsilon, \pi_i)$$

Fluctuating hydro description of QGP

QGP in heavy-ion collisions:

Size of the fire balls $\sim 10~\text{fm}$ small enough for fluctuations to be important

One collision event

Observables obtained from samples fluctuate event-by-event

Number of particles $\sim 10^2 - 10^4$ large enough for hydro to be applicable

Flow collectivity manifests QGP as a *perfect fluid*Gale et al, 1301.5893

Hydrodynamic *attractor* even far from equilibrium Florkowski et al, 1707.02282, Romatschke et al, 1712.05815

General theory of fluctuation dynamics

Theories

Top-down like (EFTs)

Starting from effective action with first principles

e.g., Martin-Siggia-Rose (MSR), Schwinger-Keldysh (SK), Hohenberg-Halperin (HH), nparticle irreducible (nPI), etc.

Glorioso et al, 1805.09331

Jain et al, 2009.01356

Sogabe et al, 2111.14667

Chao et al, 2302.00720

• • •

bottom-up like (PDEs)

Starting from phenomenological equations with required properties

e.g., Langevin equations in stochastic description, Fokker-Planck (FP) equations in deterministic description.

Akamatsu et al, 1606.07742

Nahrgang et al, 1804.05728

Singh et al, 1807.05451

Chattopadhyay et al, 2304.07279

. .

Two approaches in PDEs

Stochastic

Langevin equation

Newton's equation + noise

$$\partial_t \psi_i = F_i [\psi] + \eta_i$$

$$\langle \eta_i(x_1) \, \eta_j(x_2) \rangle = 2 Q_{ij} \, \delta^{(3)}(x_1 - x_2)$$

Newton Langevin

Brownian motion

One equation

Millions of samples

Deterministic

Fokker-Planck equation

probability evolution equation

$$\partial_t P[\psi] = \partial_{\psi} \left(\text{flux}[\psi] \right)$$

$$flux[\psi] = -FP + \partial_{\psi}(QP)$$

Fokker Planck

(Wikipedia)

One sample
Millions of equations

Correlators

• Both approaches consider n-pt correlators $G_n \equiv \langle \underbrace{\phi ... \phi}_{n} \rangle \equiv \int d\psi P[\psi] \underbrace{\phi ... \phi}_{n}$ where $\phi \equiv \psi - \langle \psi \rangle$.

Events number vs net-proton yields (STAR)

n-pt correlators are related to cumulants measured in HIC

Net-proton cumulants vs energy

Dynamics of correlators

• Evolution equations for n-pt correlators: XA et al, 2009.10742, 2212.14029

$$\partial_t G_n = \mathcal{F} [\psi, G_2, G_3, ..., G_n, G_{n+1}, ..., G_{\infty}]$$

need ∞ equations to close the system!

all combinatorial of trees

$$F_{i} \equiv -D \quad F_{i,j...} \equiv -\overline{C}$$

$$Q_{ij} \equiv -\Delta \quad Q_{ij,k...} \equiv \overline{C}_{ij...} \equiv \overline{C}_{ij...}$$

• Introducing the loop expansion parameters $\varepsilon \sim 1/\text{DOFs}$, Correlator evolution equations can be truncated and iteratively solved: XA et al, 2009.10742

$$\partial_t G_n = \mathcal{F}[\psi, G_2, G_3, ..., G_n] + \mathcal{O}(\varepsilon^n)$$
 where $G_n \sim \varepsilon^{n-1}$, $F \sim 1$, $Q \sim \varepsilon$.

$$G_n \sim \varepsilon^{n-1}$$
,

$$F \sim 1$$
,

$$Q \sim \varepsilon$$
.

$$(-\bullet)^{\bullet} = -D + -D$$

conventional hydro equations

one loop (renormalization & long-time tails)

$$(---)^{\bullet}$$
 = $----$ + $----$ + $----$ correlator evolution equations

extendable straightforwardly to higher-pt correlators (related to C5, C6, ...)

Connection to EFTs

Schwinger-Keldysh formalism

$$Z = \int \mathcal{D}\psi_1 \mathcal{D}\psi_2 \mathcal{D}\chi_1 \mathcal{D}\chi_2 e^{iI_0(\psi_1,\chi_1) - iI_0(\psi_2,\chi_2)} = \int \mathcal{D}\psi_1 \mathcal{D}\psi_2 e^{i\int_{\tau} \mathcal{L}_{EFT}}$$

• The effective Lagrangian is constructed following fundamental symmetries:

Glorioso et al, 1805.09331; Jain et al, 2009.01356

$$\mathcal{L}_{\text{EFT}}(\psi_r, \psi_a) = \psi_a Q^{-1}(F - \dot{\psi}_r) + i\psi_a Q^{-1}\psi_a \quad \text{where} \quad \psi_r = \frac{1}{2} (\psi_1 + \psi_2), \quad \psi_a = \psi_1 - \psi_2$$

$$P[\psi] = \int_{\psi_r = \psi(t)} \mathcal{D}\psi_r \mathcal{D}\psi_a J(\psi_r) e^{i\int_{-\infty}^t d\tau \mathcal{L}_{EFT}} \longrightarrow \partial_t P[\psi] = \frac{\partial}{\partial \psi} \left(\text{flux}[\psi] \right)$$

XA et al, in progress

Fluctuation dynamics in relativistic fluids

Relativistic dynamics

Eulerian specification

more often used in non-relativistic theory

There is a global time for every observer. All correlators G_n can be measured at the same time in the same frame (lab).

Lagrangian specification

more convenient for relativistic theory

Each fluid cell has its own clock (proper time). How to define the analogous equal-time correlator G_n in relativistic theory?

Confluent formulation: correlator and derivative

Confluent formulation: covariant description for the comoving fluctuations.

See XA et al, 2212.14029 for more details

Confluent correlator \bar{G}

boost all fields (measured at their own local rest frame) to one common frame (chosen at their midpoint)

Confluent derivative $\bar{\nabla}$

the frame at midpoint moves accordingly as the n points move, the difference of a given field before and after the movement is calculated in one same frame, with the equal-time constraint preserved by introducing the local triad e_a^{μ} with a=1,2,3

Confluent formulation: Wigner function

• The confluent n-pt Wigner transform from x-independent variable $y^a = e^a_\mu(x) \, y^\mu$ to q^a with a=1,2,3. XA et al, 2212.14029

$$W_n(x; q_1^a, ..., q_n^a) = \int \prod_{i=1}^n \left(d^3 y_i^a e^{-iq_{ia} y_i^a} \right) \delta^{(3)} \left(\frac{1}{n} \sum_{i=1}^n y_i^a \right) \bar{G}_n(x + e_a y_1^a, ..., x + e_a y_n^a)$$

Confluent fluctuation evolution equations

• Fluctuation evolution equations in the *impressionistic* form: XA et al, in progress

$$\mathscr{L}W_n = ic_s q(W_n - \dots) + \gamma q^2(W_n - \dots) + kW_n + \dots$$
 where $\mathscr{L} = u \cdot \bar{\nabla}_x + f \cdot \nabla_q$

of which the solutions match thermodynamics with entropy $S(m, p, u_{\mu}, \eta)$.

m: entropy per baryon; p: pressure; η : Lagrange multiplier for $u^2 = -1$.

Equilibrium solutions in diagrammatic representation

For $\phi = (\delta m, \delta p, \delta u_{\mu})$, there are 21+56+126=**203** equations (for the 2-pt, 3-pt and 4-pt correlators) to solve—bite off more than one can chew!

Rotating phase approximation

• Step 1: choose a set of new bases in Fock space s.t. the ideal hydrodynamic equations are diagonalized with eigenvalues $\lambda_{\pm}(q) = \pm c_s |q|$, $\lambda_m(q) = \lambda_{(i)}(q) = 0$.

$$\phi = \begin{pmatrix} \phi_m \\ \phi_p \\ \phi_\mu \end{pmatrix} = \begin{pmatrix} \delta m \\ \delta p \\ \delta u_\mu \end{pmatrix} \longrightarrow \Phi = \begin{pmatrix} \Phi_m \\ \Phi_{\pm} \\ \Phi_{(i)} \end{pmatrix} \sim \begin{pmatrix} \delta m \\ \delta p \pm c_s w \hat{q} \cdot \delta u \\ t_{(i)} \cdot \delta u \end{pmatrix} \qquad i = 1, 2$$

NB: *n*-pt correlators are analogous to *n*-particle quantum states lying in the Fock space.

• Step 2: for n-pt correlators $W_{\Phi_1...\Phi_n}(q_1,...,q_n)$,

if
$$\sum_{i=1}^{n} \lambda_{\Phi_i}(q_i)$$
 $\begin{cases} = 0 & \longrightarrow \text{ slow mode (kept)} \\ \neq 0 & \longrightarrow \text{ fast mode (averaged out)} \end{cases}$

E.g.,
$$W_{+-}(q_1, q_2)$$
 is a slow mode since $\lambda_+(q_1) + \lambda_-(q_2) = c_s(|q_1| - |q_2|) = 0$; $W_{+++}(q_1, q_2, q_3)$ is not a slow mode since $\lambda_+(q_1) + \lambda_+(q_2) + \lambda_+(q_3) = c_s(|q_1| + |q_2| + |q_3|) \neq 0$.

As a result, we end up with 7+10+15=32 equations to solve.

E.g., the 7 independent 2-pt slow modes are W_{mm} , $W_{m(i)}$, $W_{(i)(j)}$, W_{+-} .

Fluctuation feedback

 Hydrodynamic fluctuations renormalize bare quantities order by order in gradient expansion.

$$T_{\mu\nu}^{\text{physical}} = T_{\mu\nu}^{(0)} + T_{\mu\nu}^{(1)} + T_{\mu\nu}^{(2)} + \ldots + \underbrace{\delta T_{\mu\nu}(\{G_n\})}_{\text{bare}}$$

$$= T_{\mu\nu}^{R(0)} + T_{\mu\nu}^{R(1)} + T_{\mu\nu}^{R(2)}$$

$$= \underbrace{T_{\mu\nu}^{R(0)} + T_{\mu\nu}^{R(1)} + T_{\mu\nu}^{R(2)}}_{\text{renormalized}}$$

$$+ \tilde{T}_{\mu\nu}^{(3/2)} + \tilde{T}_{\mu\nu}^{(3)} + \tilde{T}_{\mu\nu}^{(9/2)} + \ldots$$

$$= \underbrace{Iong-time\ tails}_{q_*}$$

$$= \underbrace{Iong-time\ tails}_{q_*}$$

where
$$G_n(x) \sim \int d^3q_1...d^3q_n \delta^{(3)}(q_1 + ... + q_n) W_n(x, q_1, ..., q_n)$$

Long-time tail due to n-pt correlators is of order $\varepsilon^{n-1} \sim q^{3(n-1)} \sim k^{3(n-1)/2}$, the leading $k^{3/2}$ behavior results from 2-pt correlators via — .

Fluctuation dynamics near critical point

Critical dynamics

- Different slow modes may relax with different time scales near critical point due to critical slowing down. Stephanov, 1104.1627; Berdnikov et al, 9912274; XA, 2003.02828
- The slowest modes are fluctuations of entropy $(W_{mm}, W_{mmm}, W_{mmmm}, ...)$ with $\tau_{\rm rel} \sim \xi^3$.

Evolution of the slowest modes (i.e., W_{mm} , W_{mmm} , W_{mmmm}) in a toy model XA et al, 2009.10742, 2209.15005

for recent numerical implementation and freeze-out procedure, see talk by M. Pradeep (CP1, Tue) Pradeep et al, 2204.00639, 2211.09142

Conclusion

Recap

- Various approaches for fluctuating hydro have been developed, each with its own pros and cons.
- Our framework for fluctuation dynamics now incorporates non-Gaussian fluctuations of fluid velocity covariantly.

Outlook

- Need efforts to simulate the fluctuation equations with background.
- Need freeze-out prescription for the connection to observables.
- More...