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Motivation



Filling the gap
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Collision event simulation at LHC (CERN)

We are using non-equilibrium techniques

                           to explore the equilibrium QCD phase structure 
                                                                                                 via fluctuations!

Is there a CP between QGP and hadron gas phases?

Q2: Is there phase coexistence, i.e., 1st order transition? Likely.

Unfortunately, lattice QCD cannot reach beyond µB ⇠ 2T .
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The Phases of QCD

1st Order Phase Transition
Critical
Point?

But 1st order transition (and thus C.P.) is ubiquitous in models of QCD:
NJL, RM, Holography, Strong coupl. Lattice QCD, . . .

M. Stephanov QCD Critical Point ASU 2020 10 / 36
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Thermal equilibrium is extremely boring.

Fluctuations in equilibrium

• Non-Gaussian fluctuations become more important when systems 
possess smaller number of DOFs (e.g., closer to the critical point).
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Ising model: the phase transition

x>xcrit x=xcrit x<xcrit

Prob≍ x#{+-neighbors}

ξ → ∞Ising phase diagram

Ising model: the phase transition

x>xcrit x=xcrit x<xcrit

Prob≍ x#{+-neighbors}

Ising model: the phase transition

x>xcrit x=xcrit x<xcrit

Prob≍ x#{+-neighbors}

Ising model: the phase transition

x>xcrit x=xcrit x<xcrit

Prob≍ x#{+-neighbors}

• Thermal fluctuations: systems possess large number of DOFs; 
small deviation from Gaussian due to CLT.

Landau

ξ ↔ λlight

Susskind



Fluctuations out of equilibrium
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∂t ψ = ∇ ⋅ (flux [ψ]) where ψ = ( n, ϵ, πi )

• Hydrodynamic fluctuations:
large number of locally thermalized 

cells comoving with fluid

fluctuations not equilibrated at large scales

evolution described by a set of 
conservation equations



Fluctuating hydro description of QGP
• QGP in heavy-ion collisions:

6

Flow collectivity manifests QGP as a perfect fluid 
Gale et al, 1301.5893

static fluid

Static fluid & static fluctuations
Stephanov, 2011
Mroczek, Acuna, Noronha-Hostler, Parotto, Ratti & Stephanov, 2020
see also talk by Karthein (Tue)
…

Static or uniformly varying fluid & dynamic fluctuations
Berdnikov & Rajagopal 1999
Mukherjee, Venugopalan & Yin, 2015
Nahrgang, Bluhm, Schafer & Bass, 2019
XA, Basar, Stephanov & Yee, 2020
see also talk by Pradeep (Tue), Sogabe (Wed)
…

...toS
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LHC energies [20]. The agreement with experimental results from LHC shown in
Fig. 6 is particularly striking.
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Fig. 6. Left: Root-mean-square anisotropic flow coe�cients hv2ni1/2 in the IP-Glasma model [20],
computed as a function of centrality, compared to experimental data of vn{2}, n 2 {2, 3, 4},
by the ALICE collaboration [182] (points). Right: Root-mean-square anisotropic flow coe�cients
hv2ni1/2 as a function of transverse momentum, compared to experimental data by the ATLAS
collaboration using the event plane (EP) method [22] (points). Bands indicate statistical errors.

This agreement indicates that initial state fluctuations in the deposited energy
density, translated by hydrodynamic evolution into anisotropies in the particle pro-
duction, are the main ingredient to explain the measured flow coe�cients.

Because of this feature, some e↵ort has been concentrated on characterizing the
initial state in a way that ties it directly to the measured flow. The simplest way of
doing so is to compare the initial eccentricities of the system

"n =

p
hrn cos(n�)i2 + hrn sin(n�)i2

hrni (13)

to the final flow harmonics vn. However, in particular for v4 and higher harmonics,
the nonlinear nature of hydrodynamics becomes important [183] and more accurate
predictors for flow coe�cients involve both linear and nonlinear terms, e.g. v5 has
contributions from "5 and "2"3, and it was shown [184] that the nonlinear term
becomes more dominant with increasing viscosity.

The fact that linear terms are damped more by viscosity leads to a growing
correlation of di↵erent event planes

 n =
1

n
arctan

hsin(n�)i
hcos(n�)i , (14)

with increasing viscosity [184], a result that is in line with findings in a di↵erent
work [185], where experimental data on event plane correlations from the ATLAS
collaboration [186] was compared to hydrodynamic calculations in di↵erent scenar-
ios.
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FIG. 1. Numerical results for energy density evolution as a function of inverse gradient strength ⌧T for conformal Bjorken
flow in three di↵erent microscopic theories. Note that for Boltzmann and AdS/CFT, the numerical solutions shown are low
dimensional projections from an infinite dimensional space of initial conditions. See text for details.

such that the ambiguity in the Borel transform of the
transseries part with m = m0 is exactly canceled by
⌦m0+1(⌧T ) for the part with m = m0 + 1. This pro-
gram has successfully been performed for rBRSSS in
Ref. [15, 34]. The final result for the Borel trans-
form of ⌧@⌧ ln ✏ can be written in the form ⌧@⌧ ln ✏ =
(⌧@⌧ ln ✏)att + (⌧@⌧ ln ✏)non�hydro, consisting of a non-
analytic “attractor” solution defined for arbitrary ⌧T
to which the non-hydrodynamic part decays to on a
timescale ⌧T ' z�1

0 .

Note that obtaining non-analytic solutions from diver-
gent perturbative series’ has recently generated consider-
able interest under the name of “resurgence” [15, 16, 34].

Finding Hydrodynamic Attractors Identifying
the hydrodynamic attractor solution from the Borel re-
summation program of the hydrodynamic gradient series
is possible, but somewhat tedious. Fortunately, it is pos-
sible to obtain the same attractor solution more directly
from the equations of motion via the analogue of a slow-
roll approximation, cf. Refs. [15, 35] (see Supplemental
Material for details). In Fig. 1, results from solving the
rBRSSS equations of motions for a range of initial con-
ditions (“numerical”) are as shown together with zeroth,
first and second order hydrodynamic gradient series re-
sults from Eq. (2). It can be observed that the numerical
solutions converge to the hydrodynamic results for mod-
erate gradient strength. One also observes from Fig. 1
that the numerical results trend to the unique attractor

solution even before matching the gradient series results.
This attractor solution is nothing else but the result of
the Borel transformation of the divergent transseries as
reported in Ref. [15].
Hydrodynamic Attractor in Kinetic Theory It

is tempting to look for hydrodynamic attractors in other
microscopic theories, such as kinetic theory in the relax-
ation time approximation. This theory is defined by a
single particle distribution function f(t,x,p) obeying

pµ@µf � ��
µ⌫p

µp⌫
@

@p�
f = �f � f eq

⌧⇡
, (3)

where here ��
µ⌫ are the Christo↵el symbols associated

with the Bjorken flow geometry and the equilibrium dis-
tribution function may be taken to be f eq = ep

µuµ/T .
Here uµ is again the time-like eigenvector of hTµ⌫i =R d3p

(2⇡)3
pµp⌫

p f(x, p) and T is the non-equilibrium tempera-

ture defined from the time-like eigenvalue of hTµ⌫i, which

for a single massless Boltzmann particle is T =
⇣

⇡2✏
6

⌘1/4
.

Note that for a conformal system one can again write
⌧⇡ = C⇡T�1 with C⇡ a constant. Solving Eq. (3) nu-
merically, representative results for ⌧@⌧ ln ✏ are shown in
Fig. 1 (note that ⌧@⌧ ln ✏  �1 because the e↵ective lon-
gitudinal pressure PL = ✏ (1 + ⌧@⌧ ln ✏) in kinetic theory
can never be negative for f > 0).
One observes the same basic structure as in rBRSSS,

indicating the presence of a hydrodynamic attractor at

Hydrodynamic attractor even far from equilibrium 
Florkowski et al, 1707.02282, Romatschke et al, 1712.05815

One collision event 

Observables obtained from samples 
fluctuate event-by-event

 Number of particles 


large enough for hydro to be applicable

∼ 102 − 104



General theory of fluctuation dynamics



Theories

bottom-up like (PDEs)

8

Starting from phenomenological 
equations with required properties


e.g., Langevin equations in stochastic 

description, Fokker-Planck (FP) 

equations in deterministic description.

Akamatsu et al, 1606.07742

Nahrgang et al, 1804.05728


Singh et al, 1807.05451 


Chattopadhyay et al, 2304.07279


…

Top-down like (EFTs)

Starting from effective action with 
first principles


e.g., Martin-Siggia-Rose (MSR), Schwinger-

Keldysh (SK), Hohenberg-Halperin (HH), n-

particle irreducible (nPI), etc.

Glorioso et al, 1805.09331


Jain et al, 2009.01356


Sogabe et al, 2111.14667 


Chao et al, 2302.00720


…



Two approaches in PDEs

Langevin equation          
Newton’s equation + noise

9

∂t ψi = Fi [ψ] + ηi

⟨ηi(x1) ηj(x2)⟩ = 2Qij δ(3)(x1 − x2)

Brownian motion

Newton Langevin

Fokker-Planck equation     
probability evolution equation

∂t P[ψ] = ∂ψ (flux[ψ])
flux[ψ] = − FP + ∂ψ(QP)

(Wikipedia)

PlanckFokker

One sample

Millions of equations

One equation

Millions of samples

Stochastic Deterministic



• Both approaches consider -pt correlators                                                
where .

n
ϕ ≡ ψ − ⟨ψ⟩

Correlators

10
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Figure 2: Event-by-event net-proton number distributions for head-on (0-5% central) Au+Au

collisions for nine
p

sNN values measured by the STAR detector at RHIC. The distributions are

normalized to the total number of events at each
p

sNN. The statistical uncertainties are smaller

than the symbol sizes and the lines are to guide the eye. The distributions in this figure are not

corrected for proton and anti-proton detection efficiency. The deviation of the distribution for
p

sNN

= 54.4 GeV from the general energy dependence trend is understood to be due to the reconstruction

efficiency of protons and anti-protons being different compared to other energies.

transverse momentum range 0.4 < pT (GeV/c)< 2.0 for Au+Au collisions at various
p

sNN. To

study the shape of the event-by-event net-proton distribution in detail, cumulants (Cn) of various

orders are calculated, where C1 = M, C2 = s2, C3 = Ss3 and C4 = ks4.

Figure 3 shows the variation of net-proton cumulants (Cn) as a function of
p

sNN for cen-

tral and peripheral Au+Au collisions. The cumulants are corrected for the multiplicity variations

8

Events number vs net-proton yields (STAR)

shown in Fig. 2. The cumulants are also corrected for the
finite track reconstruction efficiencies of the TPC and
TOF detectors. This is done by assuming a binomial
response of the two detectors [42,45]. A cross-check using
a different method based on unfolding [34] the distribu-
tions for central Auþ Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV
has been found to give values consistent with the cumu-
lants shown in Fig. 2. Further, the efficiency correction
method used has been verified in a Monte Carlo calcu-
lation. Typical values for the efficiencies in the TPC (TOF
matching) for the momentum range studied in 0%–5%
central Auþ Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 7.7 GeV are 83%
(72%) and 81% (70%) for the protons and antiprotons,
respectively. The corresponding efficiencies for

ffiffiffiffiffiffiffiffi
sNN

p ¼
200 GeV collisions are 62% (69%) and 60% (68%) for the
protons and antiprotons, respectively. The statistical
uncertainties are obtained using a bootstrap approach
[28,45] and the Delta theorem [28,45,46] method. The
systematic uncertainties are estimated by varying the
experimental requirements to reconstruct p (p̄) in the
TPC and TOF. These requirements include the distance of
the proton and antiproton tracks from the primary vertex
position, the track quality reflected by the number of TPC
space points used in the track reconstruction, the particle
identification criteria passing certain selection criteria,
and the uncertainties in estimating the reconstruction
efficiencies. The systematic uncertainties at different
collision energies are uncorrelated.
The large values of C3 and C4 for central Auþ Au

collisions show that the distributions have non-Gaussian
shapes, a possible indication of enhanced fluctuations
arising from a possible critical point [11,22]. The
corresponding values for peripheral collisions are small
and close to zero. For central collisions, the C1 and C3

monotonically decrease with increasing
ffiffiffiffiffiffiffiffi
sNN

p
.

We employ ratios of cumulants in order to cancel volume
variations to first order. Further, these ratios of cumulants
are related to the ratio of baryon-number susceptibilities.
The latter are χBn ¼ ðdnP=dμnBÞ, where n is the order and P
is the pressure of the system at a given T and μB,
computed in lattice QCD and QCD-based models [47].
The C3=C2 ¼ Sσ ¼ ðχB3 =TÞ=ðχB2 =T2Þ and C4=C2 ¼ κσ2 ¼
ðχB4 Þ=ðχB2 =T2Þ. Close to the critical point, QCD-based
calculations predict the net-baryon number distributions
to be non-Gaussian and the susceptibilities to diverge,
causing moments, especially higher-order quantities like
κσ2, to have nonmonotonic variations as a function offfiffiffiffiffiffiffiffi
sNN

p
[47,48].

Figure 3 shows the central 0%–5% Auþ Au collision
data for Sσ and κσ2 in the collision energy range of 7.7–
62.4 GeV, fitted to a polynomial function of order 5 and
4, respectively. The derivative of the polynomial function
changes sign [34] with

ffiffiffiffiffiffiffiffi
sNN

p
for κσ2, thereby indicating a

nonmonotonic variation of the measurement with the
collision energy. The uncertainties of the derivatives are
obtained by varying the data points randomly at each
energy within the statistical and systematic uncertainties
separately. The overall significance of the change
in the sign of the slope for κσ2 vs

ffiffiffiffiffiffiffiffi
sNN

p
, based on the

fourth order polynomial function fitting procedure fromffiffiffiffiffiffiffiffi
sNN

p ¼ 7.7–62.4 GeV, is 3.1 σ. This significance is
obtained by generating one million sets of points, where
for each set, the measured κσ2 value at a given

ffiffiffiffiffiffiffiffi
sNN

p
is

randomly varied within the total Gaussian uncertainties
(systematic and statistical uncertainties added in quad-
rature). Then for each new κσ2 vs a

ffiffiffiffiffiffiffiffi
sNN

p
set of points, a

fourth order polynomial function is fitted and the
derivative values are calculated at a different

ffiffiffiffiffiffiffiffi
sNN

p
(as
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FIG. 2. Cumulants (Cn) of the net-proton distributions for
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as a function of collision energy. The transverse momentum (pT)
range for the measurements is from 0.4 to 2 GeV=c, and the
rapidity (y) range is −0.5 < y < 0.5.
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FIG. 3. Upper panels: Sσ (1) and κσ2 (2) of net-proton
distributions for 0%–5% central Auþ Au collisions fromffiffiffiffiffiffiffiffi
sNN

p ¼ 7.7–62.4 GeV. The bars on the data points are statistical
and systematic uncertainties added in quadrature. The black solid
lines are polynomial fit functions that best describe the data. The
black dashed lines are the Poisson baselines. Lower panels:
Derivative of the fitted polynomial as a function of

ffiffiffiffiffiffiffiffi
sNN

p
. The bar

and the shaded band on the derivatives represent the statistical
and systematic uncertainties, respectively.

PHYSICAL REVIEW LETTERS 126, 092301 (2021)

092301-5

Net-proton cumulants vs energy    

-pt correlators are related to 
cumulants measured in HIC

n

Gn ≡ ⟨ ϕ…ϕ
⏟

⟩ ≡ ∫ dψ P[ψ] ϕ…ϕ
⏟n n



Dynamics of correlators
• Evolution equations for -pt correlators: XA et al, 2009.10742, 2212.14029n
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∂t Gn = ℱ [ψ, G2, G3, …, Gn, ]

extendable straightforwardly 
to higher-pt correlators 
(related to C5, C6, …)

• Introducing the loop expansion parameters , Correlator evolution 
equations can be truncated and iteratively solved: XA et al, 2009.10742 

ε ∼ 1/DOFs

∂t Gn = ℱ [ψ, G2, G3, …, Gn] + Gn ∼ εn−1, F ∼ 1, Q ∼ ε .where

need  equations to close the system!∞
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Connection to EFTs
• Schwinger-Keldysh formalism
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KeldyshSchwinger
ti tf

1
2

Z = ∫ 𝒟ψ1𝒟ψ2𝒟χ1𝒟χ2 e i I0 (ψ1 , χ1) − i I0 (ψ2 , χ2) = ∫ 𝒟ψ1𝒟ψ2 e i ∫τ ℒEFT

ℒEFT(ψr , ψa) = ψaQ−1(F − ·ψr) + iψaQ−1ψa ψr =
1
2 (ψ1 + ψ2), ψa = ψ1 − ψ2

P[ψ] = ∫ψr=ψ(t)
𝒟ψr 𝒟ψa J(ψr) ei ∫t

−∞ dτℒEFT

• The effective Lagrangian is constructed following fundamental symmetries:               
Glorioso et al, 1805.09331; Jain et al, 2009.01356

∂t P[ψ] =
∂

∂ψ (flux[ψ])

where

XA et al, in progress



Fluctuation dynamics in relativistic fluids



Relativistic dynamics
Eulerian specification                                                  
more often used in non-relativistic theory

14

u ⋅ ∂ ψi = . . .
u ⋅ ∂Gn = . . .

Each fluid cell has its own clock (proper time). 
How to define the analogous equal-time 

correlator  in relativistic theory?Gn

(∂t + v ⋅ ∇) ψi = . . .
(∂t + v ⋅ ∇) Gn = . . .

There is a global time for every observer. 
All correlators  can be measured at the 

same time in the same frame (lab).
Gn

Lagrangian specification                             
more convenient for relativistic theory

u = u(ψ)



Confluent formulation: correlator and derivative
• Confluent formulation: covariant description for the comoving fluctuations. 

See XA et al, 2212.14029 for more details

15

Λ(x2-x)

Λ(x1-x) Λ(xn-x) u(xn)
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e1(x+Δx)Λ(Δx)φ

e1

e

(a) (b)
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Confluent derivative ∇̄

boost all fields (measured at their own 
local rest frame) to one common frame 

(chosen at their midpoint)

the frame at midpoint moves accordingly as the  
points move, the difference of a given field before 
and after the movement is calculated in one same 
frame, with the equal-time constraint preserved by 

introducing the local triad  with 

n

eμ
a a = 1,2,3



Confluent formulation: Wigner function
• The confluent -pt Wigner transform from -independent variable 

 to  with . XA et al, 2212.14029

n x
ya = ea

μ(x) yμ qa a = 1,2,3
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Wn(x; qa
1 , …, qa

n) = ∫
n

∏
i=1

(d3ya
i e−iqiaya

i ) δ(3) ( 1
n

n

∑
i=1

ya
i ) Ḡn(x + eaya

1 , …, x + eaya
n)

= 0+

x-space

q1x1

x2

xn

q2

qn

q-space

q1 q2 qn+

x

x1 x2+ +x = n
xn+ +

x≡ yn+

y-space

x1

x2

xn
x

x≡ yn+

= 0+

q1

q2

qn

q-space

q1 q2 qn++

u(x)

(a) (b)
= 0+y1 y2 yn++

u(x)

x

u(x) = 0yi u(x) = 0qi& &

.⑧k ⑧É

☒

•

.⑧k

⑧dd ④É

•

.⑧k

•
•

y-space                                                              q-space



Confluent fluctuation evolution equations
• Fluctuation evolution equations in the impressionistic form: XA et al, in progress
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of which the solutions match thermodynamics with entropy .  
: entropy per baryon; : pressure; : Lagrange multiplier for 

S(m, p, uμ, η)
m p η u2 = − 1.

ℒWn = icsq(Wn − …) + γq2(Wn − …) + kWn + … where ℒ = u ⋅ ∇̄x + f ⋅ ∇q

For , there are 21+56+126=203 equations (for the 2-pt, 3-pt and 4-pt 
correlators) to solve——bite off more than one can chew!

ϕ = ( δm, δp, δuμ )
Equilibrium solutions in diagrammatic representation



Rotating phase approximation
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• Step 1: choose a set of new bases in Fock space s.t. the ideal hydrodynamic 
equations are diagonalized with eigenvalues .λ±(q) = ± cs |q | , λm(q) = λ(i)(q) = 0

Φ =
Φm

Φ±

Φ(i)

∼
δm

δp ± csw ̂q ⋅ δu
t(i) ⋅ δu

i = 1, 2ϕ =
ϕm

ϕp

ϕμ

=
δm
δp
δuμ

• Step 2: for -pt correlators ,n WΦ1…Φn
(q1, …, qn)

As a result, we end up with 7+10+15=32 equations to solve. 
E.g., the 7 independent 2-pt slow modes are .Wmm, Wm(i), W(i)( j), W+−

NB: -pt correlators are analogous to -particle 
quantum states lying in the Fock space.
n n

n

∑
i=1

λΦi
(qi) { = 0 ⟶ slow mode (kept)

≠ 0 ⟶ fast mode (averaged out)

E.g.,  is a slow mode since ;

 is not a slow mode since .

W+−(q1, q2) λ+(q1) + λ−(q2) = cs( |q1 | − |q2 | ) = 0
W+++(q1, q2, q3) λ+(q1) + λ+(q2) + λ+(q3) = cs( |q1 | + |q2 | + |q3 | ) ≠ 0

if



Fluctuation feedback
• Hydrodynamic fluctuations renormalize bare quantities order by order in 

gradient expansion.
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Tphysical
μν = T(0)

μν + T(1)
μν + T(2)

μν + …

bare

+

= TR(0)
μν + TR(1)

μν + TR(2)
μν

renormalized

+T̃(3/2)
μν + T̃(3)

μν + T̃(9/2)
μν + …

long−time tails

where Gn(x) ∼ ∫ d3q1…d3qnδ(3)(q1 + … + qn)Wn(x, q1, …, qn)

Long-time tail due to -pt correlators is of order , 
the leading  behavior results from 2-pt correlators via              .

n εn−1 ∼ q3(n−1) ∼ k3(n−1)/2

k3/2

( )

( )

( )

ingredients

equations

( )

!ij Gij…

Fi

M ij , k…

Fi ,  j…

one loop ( renormalization & long-time tails )conventional hydro equations

correlator evolution equations

S,i

⑧
...

...

:

&

· ·

&

· ·

·

· · ·
·

·
& ·
· · ·

· · ⑥
·

for OM talk

δTμν({Gn})

fluctuation



Fluctuation dynamics near critical point



Critical dynamics
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• Different slow modes may relax with different time scales near critical point 
due to critical slowing down. Stephanov, 1104.1627; Berdnikov et al, 9912274; XA, 2003.02828

equilibrium

q=0.3

q=0.1
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Evolution of the slowest modes ( i.e., , ,  ) in a toy model XA et al, 2009.10742, 2209.15005Wmm Wmmm Wmmmm

for recent numerical implementation and freeze-out procedure, see talk by M. Pradeep (CP1, Tue)      
Pradeep et al, 2204.00639, 2211.09142

• The slowest modes are fluctuations of entropy ( , , , …) 
with .

Wmm Wmmm Wmmmm
τrel ∼ ξ3



Conclusion



Recap

• Various approaches for fluctuating hydro have been developed, each with 
its own pros and cons.


• Our framework for fluctuation dynamics now incorporates non-Gaussian 
fluctuations of fluid velocity covariantly.
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• Need efforts to simulate the fluctuation equations with background.


• Need freeze-out prescription for the connection to observables.


• More…

Outlook


