Non-Gaussian Fluctuations in Relativistic Fluids

Xin An
2023 (2)

Based on work with Basar, Stephanov and Yee
Sep 5 2023, Houston
(包NCBJ

Motivation

Filling the gap

Collision event simulation at LHC (CERN)

We are using non-equilibrium techniques
to explore the equilibrium QCD phase structure via fluctuations!

Fluctuations in equilibrium

- Thermal fluctuations: systems possess large number of DOFs; small deviation from Gaussian due to CLT.

Thermal equilibrium is extremely boring.

- Non-Gaussian fluctuations become more important when systems possess smaller number of DOFs (e.g., closer to the critical point).

Fluctuations out of equilibrium

- Hydrodynamic fluctuations:
large number of locally thermalized

evolution described by a set of conservation equations

$$
\partial_{t} \psi=\nabla \cdot(\text { flux }[\psi]) \quad \text { where } \quad \psi=\left(\mathrm{n}, \epsilon, \pi_{\mathrm{i}}\right)
$$

Fluctuating hydro description of QGP

- QGP in heavy-ion collisions:

Size of the fire balls $\sim 10 \mathrm{fm}$ small enough for fluctuations to be important

One collision event

Observables obtained from samples fluctuate event-by-event

Number of particles $\sim 10^{2}-10^{4}$
large enough for hydro to be applicable

Flow collectivity manifests QGP as a perfect fluid Gale et al, 1301.5893

Hydrodynamic attractor even far from equilibrium
Florkowski et al, 1707.02282, Romatschke et al, 1712.05815

General theory of fluctuation dynamics

Theories

Top-down like (EFTs)

Starting from effective action with first principles
e.g., Martin-Siggia-Rose (MSR), SchwingerKeldysh (SK), Hohenberg-Halperin (HH), nparticle irreducible (nPI), etc.

Glorioso et al, 1805.09331
Jain et al, 2009.01356
Sogabe et al, 2111.14667
Chao et al, 2302.00720

bottom-up like (PDEs)

Starting from phenomenological
equations with required properties
e.g., Langevin equations in stochastic description, Fokker-Planck (FP) equations in deterministic description.

Akamatsu et al, 1606.07742
Nahrgang et al, 1804.05728
Singh et al, 1807.05451
Chattopadhyay et al, 2304.07279

Two approaches in PDEs

Stochastic

Langevin equation

Newton's equation + noise

$$
\begin{gathered}
\partial_{t} \psi_{i}=F_{i}[\psi]+\eta_{i} \\
\left\langle\eta_{i}\left(x_{1}\right) \eta_{j}\left(x_{2}\right)\right\rangle=2 Q_{i j} \delta^{(3)}\left(x_{1}-x_{2}\right)
\end{gathered}
$$

Newton Langevin

Brownian motion

One equation
Millions of samples

Deterministic

Fokker-Planck equation

probability evolution equation

$$
\partial_{t} P[\psi]=\partial_{\psi}(\text { flux }[\psi])
$$

$$
\operatorname{flux}[\psi]=-\mathrm{FP}+\partial_{\psi}(\mathrm{QP})
$$

One sample
Millions of equations

Correlators

- Both approaches consider n-pt correlators $G_{n} \equiv\langle\underbrace{\phi \ldots \phi}_{n}\rangle \equiv \int d \psi P[\psi] \underbrace{\phi \ldots \phi}_{n}$
where $\phi \equiv \psi-\langle\psi\rangle$.

variance
\downarrow
width
$+$

skewness \downarrow
lopsidedness
$+$
$+$

$$
\begin{gathered}
\text { kurtosis } \\
\downarrow \\
\text { sharpness }
\end{gathered}
$$

Net-proton cumulants vs energy

Dynamics of correlators

- Evolution equations for n-pt correlators: 咍eta, 2009:10742, 2212,14029
$\partial_{t} G_{n}=\mathscr{F}\left[\psi, G_{2}, G_{3}, \ldots, G_{n}, G_{n+1}, \ldots, G_{\infty}\right] \quad$ need ∞ equations to close the system!

- Introducing the loop expansion parameters $\varepsilon \sim 1 / D O F s$, Correlator evolution equations can be truncated and iteratively solved: x_{A} etal, 2009.10742
$\partial_{t} G_{n}=\mathscr{F}\left[\psi, G_{2}, G_{3}, \ldots, G_{n}\right]+\mathscr{O}\left(\varepsilon^{n}\right)$
where
$G_{n} \sim \varepsilon^{n-1}$,
$F \sim 1$,
$Q \sim \varepsilon$.
$(\rightarrow)^{\bullet}=\longrightarrow$
conventional hydro equations
one loop (renormalization \& long-time tails)

extendable straightforwardly to higher-pt correlators (related to C5, C6, ...)

Connection to EFTs

- Schwinger-Keldysh formalism

Schwinger Keldysh

$$
Z=\int \mathscr{D} \psi_{1} \mathscr{D} \psi_{2} \mathscr{D} \chi_{1} \mathscr{D} \chi_{2} e^{i I_{0}\left(\psi_{1}, \chi_{1}\right)-i I_{0}\left(\psi_{2}, \chi_{2}\right)}=\int \mathscr{D} \psi_{1} \mathscr{D} \psi_{2} e^{i \int_{\tau} \mathscr{L}_{\mathrm{EFT}}}
$$

- The effective Lagrangian is constructed following fundamental symmetries:

Glorioso et al, 1805.09331; Jain et al, 2009.01356

$$
\begin{array}{lll}
\mathscr{L}_{\mathrm{EFT}}\left(\psi_{r}, \psi_{a}\right)=\psi_{a} Q^{-1}\left(F-\dot{\psi}_{r}\right)+i \psi_{a} Q^{-1} \psi_{a} \quad \text { where } \quad \psi_{r}=\frac{1}{2}\left(\psi_{1}+\psi_{2}\right), \quad \psi_{a}=\psi_{1}-\psi_{2} \\
P[\psi]=\int_{\psi_{r}=\psi(t)} \mathscr{D} \psi_{r} \mathscr{D} \psi_{a} J\left(\psi_{r}\right) e^{i \int_{-\infty}^{t} d \tau \mathscr{L}_{\mathrm{EFT}}} \longrightarrow \partial_{t} P[\psi]=\frac{\partial}{\partial \psi}(\text { flux }[\psi])
\end{array}
$$

[^0]
Fluctuation dynamics in relativistic fluids

Relativistic dynamics

Eulerian specification

more often used in non-relativistic theory

There is a global time for every observer.
All correlators G_{n} can be measured at the same time in the same frame (lab).

Lagrangian specification

 more convenient for relativistic theory

Each fluid cell has its own clock (proper time).
How to define the analogous equal-time correlator G_{n} in relativistic theory?

Confluent formulation: correlator and derivative

- Confluent formulation: covariant description for the comoving fluctuations.

See XA et al, 2212.14029 for more details

Confluent correlator \bar{G}

boost all fields (measured at their own local rest frame) to one common frame (chosen at their midpoint)

Confluent derivative $\bar{\nabla}$

(a)

(b)
the frame at midpoint moves accordingly as the n points move, the difference of a given field before and after the movement is calculated in one same frame, with the equal-time constraint preserved by introducing the local triad e_{a}^{μ} with $a=1,2,3$

Confluent formulation: Wigner function

- The confluent n-pt Wigner transform from x-independent variable $y^{a}=e_{\mu}^{a}(x) y^{\mu}$ to q^{a} with $a=1,2,3$. xA et al, 2212.14029

$$
W_{n}\left(x ; q_{1}^{a}, \ldots, q_{n}^{a}\right)=\int \prod_{i=1}^{n}\left(d^{3} y_{i}^{a} e^{-i q_{i a} y_{i}^{a}}\right) \delta^{(3)}\left(\frac{1}{n} \sum_{i=1}^{n} y_{i}^{a}\right) \bar{G}_{n}\left(x+e_{a} y_{1}^{a}, \ldots, x+e_{a} y_{n}^{a}\right)
$$

(a)

(b)

Confluent fluctuation evolution equations

- Fluctuation evolution equations in the impressionistic form: $x_{\text {e etal, in progeres }}$

$$
\mathscr{L} W_{n}=i c_{s} q\left(W_{n}-\ldots\right)+\gamma q^{2}\left(W_{n}-\ldots\right)+k W_{n}+\ldots \quad \text { where } \quad \mathscr{L}=u \cdot \bar{\nabla}_{x}+f \cdot \nabla_{q}
$$ of which the solutions match thermodynamics with entropy $S\left(m, p, u_{\mu}, \eta\right)$. m : entropy per baryon; p : pressure; η : Lagrange multiplier for $u^{2}=-1$.

Equilibrium solutions in diagrammatic representation
For $\phi=\left(\delta m, \delta p, \delta u_{\mu}\right)$, there are $21+56+126=\mathbf{2 0 3}$ equations (for the $2-\mathrm{pt}, 3-\mathrm{pt}$ and $4-\mathrm{pt}$ correlators) to solve--bite off more than one can chew!

Rotating phase approximation

- Step 1: choose a set of new bases in Fock space s.t. the ideal hydrodynamic equations are diagonalized with eigenvalues $\lambda_{ \pm}(q)= \pm c_{s}|q|, \lambda_{m}(q)=\lambda_{(i)}(q)=0$.
E.g., $W_{+-}\left(q_{1}, q_{2}\right)$ is a slow mode since $\lambda_{+}\left(q_{1}\right)+\lambda_{-}\left(q_{2}\right)=c_{s}\left(\left|q_{1}\right|-\left|q_{2}\right|\right)=0$;
$W_{+++}\left(q_{1}, q_{2}, q_{3}\right)$ is not a slow mode since $\lambda_{+}\left(q_{1}\right)+\lambda_{+}\left(q_{2}\right)+\lambda_{+}\left(q_{3}\right)=c_{S}\left(\left|q_{1}\right|+\left|q_{2}\right|+\left|q_{3}\right|\right) \neq 0$.
As a result, we end up with $7+10+15=32$ equations to solve.
E.g., the 7 independent 2-pt slow modes are $W_{m m}, W_{m(i)}, W_{(i)(j)}, W_{+-}$.

Fluctuation feedback

- Hydrodynamic fluctuations renormalize bare quantities order by order in gradient expansion.

$$
\begin{aligned}
T_{\mu \nu}^{\mathrm{physical}}= & \underbrace{T_{\mu \nu}^{(0)}+T_{\mu \nu}^{(1)}+T_{\mu \nu}^{(2)}+\ldots+}_{\text {bare }}+\underbrace{\delta T_{\mu \nu}\left(\left\{G_{n}\right\}\right)}_{\text {fluctuation }} \\
= & \underbrace{T_{\mu \nu}^{R(0)}+T_{\mu \nu}^{R(1)}+T_{\mu \nu}^{R(2)}}_{\text {renormalized }} \\
& +\underbrace{\tilde{T}_{\mu \nu}^{(3 / 2)}+\tilde{T}_{\mu \nu}^{(3)}+\tilde{T}_{\mu \nu}^{(9 / 2)}+\ldots}_{\text {long-time tails }}
\end{aligned}
$$

where $G_{n}(x) \sim \int d^{3} q_{1} \ldots d^{3} q_{n} \delta^{(3)}\left(q_{1}+\ldots+q_{n}\right) W_{n}\left(x, q_{1}, \ldots, q_{n}\right)$
Long-time tail due to n-pt correlators is of order $\varepsilon^{n-1} \sim q^{3(n-1)} \sim k^{3(n-1) / 2}$, the leading $k^{3 / 2}$ behavior results from 2-pt correlators via -D.

Fluctuation dynamics near critical point

Critical dynamics

- Different slow modes may relax with different time scales near critical point due to critical slowing down. Stephanov, 1104.1627; Berdnikov etal, 9912274; XA, 2003.02828
- The slowest modes are fluctuations of entropy ($\left.W_{m m}, W_{m m m}, W_{m m m m}, \ldots\right)$ with $\tau_{\text {rel }} \sim \xi^{3}$.

Evolution of the slowest modes (i.e., $W_{m m}, W_{m m m}, W_{m m m}$) in a toy model XA et al, 2009.10742, 2209.15005
for recent numerical implementation and freeze-out procedure, see talk by M. Pradeep (CP1, Tue) Pradeep et al, 2204.00639, 2211.09142

Conclusion

Recap

- Various approaches for fluctuating hydro have been developed, each with its own pros and cons.
- Our framework for fluctuation dynamics now incorporates non-Gaussian fluctuations of fluid velocity covariantly.

Outlook

- Need efforts to simulate the fluctuation equations with background.
- Need freeze-out prescription for the connection to observables.
- More...

[^0]: XA et al, in progress

