Coherent charmonium photoproduction and polarization in HICs with nuclear overlap

QM 2023 conference September, 3-9, Houston (USA)

<u>Afnan Shatat for the ALICE Collaboration</u> IJCLab Orsay, CNRS/IN2P3, Université Paris Saclay <u>afnan.shatat@cern.ch</u>

Vector meson photoproduction in HICs

b: impact parameter

- Ultra Peripheral Collisions (UPC): *b* > 2R
- Peripheral Collisions (PC): *b* < 2R and *b* large

More about J/ψ photoproduction in <u>Simone Ragoni's talk</u> (Sept. 6th, 09:10)

Vector meson photoproduction in UPC

EPJC 81 (2021) 712

 Models including nuclear shadowing are in agreement with the measurement, but cannot describe at the same time the mid and forward rapidity cross section

Impulse approximation: [PRC88, 014910 (2013)] STARLIGHT: [Comp. Phys. Comm. 212 (2017) 258] EPS09 LO (GKZ): [PRC. 93(5), 055206 (2016)] LTA (GKZ): [Phys. Rep.512, 255–393 (2012)] IIM BG (GM): [P.RC 90, 015203 (2014)] and [J. Phys.G 42(10), 105001 (2015)] Ipsat (LM) : [PRC. 83,065202 (2011)] and [PRC. 87, 032201 (2013)] BGK-I (LS): [PRC. 99(4), 044905 (2019)] GG-HS (CCK): [PRC. 97(2), 024901 (2018)], and [PLB 766, 186–191 (2017)] b-BK (BCCM): [PLB 817, 136306 (2021)]

• VM photoproduction serves as a probe of the gluon distribution in the target nucleus at low Bjorken-*x*

$$x_B = (m_{J/\psi}/\sqrt{s_{\rm NN}}) \times \exp(\pm y)$$

Coherent J/ ψ photoproduction in Pb–Pb collisions with nuclear overlap

Coherent J/ ψ photoproduction in Pb–Pb collisions: centrality dependence

- Both measurements at mid and forward rapidity don't show a significant centrality dependence*
- Measurements are qualitatively described by a large number of models developed for UPC and extended to account for the nuclear overlap

y-dependence in Pb-Pb collisions

ALICE

- Models predict a strong *y*-dependence of the VM photoproduction cross section
- Additional differential measurements are needed to better constrain models, as in UPC

The state of art: raw J/ψ yield in rapidity intervals

A. Shatat, QM, Sept. (3-9) 2023

 $J/\psi \rightarrow \mu^+\mu^-$, 70–90%, 2.5 < y < 4, p_T < 0.3 GeV/c

- J/ψ signal extraction from the invariant-mass distribution of the decay daughters
- Raw yield excess is observed for $p_{\tau} < 0.3$ GeV/c for all y

Modelization of hadronic J/ ψ yield contribution for p_{τ} < 0.3 GeV/c

- The R_{AA} largely increases for $p_T < 0.3$ GeV/c and it has a hierarchy in y, the most forward R_{AA} is the least enhanced
- The J/ψ cross section in pp collisions and the J/ψ R_{AA} are used as inputs for modeling the expected hadronic J/ψ yield
- J/ψ excess yield = J/ψ raw yield J/ψ hadronic yield
- The coherent J/ ψ yield is obtained by correcting the excess yield for the fraction of incoherent J/ ψ and the fraction of coherent $\psi(2S) \rightarrow J/\psi$ evaluated in UPC.

y-dependence of the coherent J/ ψ photoproduction cross section

• A strong rapidity dependence is seen

y-dependence of the coherent J/ψ photoproduction cross section

- A strong rapidity dependence is seen
- Models initially developed for VM photoproduction in UPC and modified for PC are able to describe qualitatively the magnitude of the cross section, but fail at reproducing the y-dependence, $\sum_{n=1}^{\infty} 350 e^{-1}$

ALI-PREL-547942

y-dependence of the coherent J/ψ photoproduction cross section

- A strong rapidity dependence is seen
- Models initially developed for VM photoproduction in UPC and modified for PC are able to describe qualitatively the magnitude of the cross section, but fail at reproducing the y-dependence, NE similarly to UPC. 350

Models considerations:

- ••••• GG-hs: photon flux with constraints on impact parameter range
- Zha: assumptions on photon-pomeron coupling (nucleus+spectator)

GBW S3 IIM S3

effective photon flux and photonuclear cross section considered w.r.t UPC calculations (see next slide)

ALI-PREL-547942

A. Shatat, QM, Sept. (3-9) 2023

GBW/IIM: extending UPC models to PCs considering the overlap region

- GBW S1 no relevant modifications w.r.t the
- IIM S1 UPC calculations
- GBW S2 ffective photon flux where only
 IIM S2 photons reaching the spectator region are considered

GBW S3 32 + modification of the photonuclear cross section (exclusion of the overlap region)

- The three scenarios are qualitatively describing the cross section
- Any effect related to the nuclear overlap is expected to be small in the peripheral 70-90% centrality range
- Understanding the impact of the nuclear overlap on the VM photoproduction cross section measurement is a theoretical challenge

AITCE

The coherent photoproduced J/ ψ polarization in Pb–Pb collisions

- **S-channel helicity conservation** suggests that the photon helicity is transferred to the produced vector meson, J/ψ .
- In helicity frame, J/ψ polarization is its spin alignment with respect to the J/ψ flight direction in the lab frame.
- A transverse polarization is observed for coherently photoproduced J/ ψ in UPC. ALICE, Pb-Pb $\sqrt{s_{NN}} = 5.02$ TeV, Coherent J/ ψ

 J/ψ polarization is studied via decay to dimuons, the corresponding dimuon angular distribution is:

$$W(\cos\theta,\varphi) \propto \frac{1}{3+\lambda_{\theta}} \left[1 + \lambda_{\theta} \cos^2\theta + \lambda_{\varphi} \sin^2\theta \cos 2\varphi + \lambda_{\theta\varphi} \sin 2\theta \cos\varphi \right]$$

$$(\lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi}) = (0,0,0) \implies$$
 No polarization
 $(\lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi}) = (+1,0,0) \implies$ Transverse polarization
 $(\lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi}) = (-1,0,0) \implies$ Longitudinal polarization

 $dN/dcos(\theta)$ 14000 ALICE data UPC 12000 $-W(\cos(\theta), \lambda_{\theta} = 0.75)$ 10000 8000 6000 4000 2000 arXiv:2304.10928 0.2 -0.20.4 0.6 -0.6 -0.40 $\cos(\theta)$ AT.T-PUB-542081 14

A. Shatat, QM, Sept. (3-9) 2023 More about J/ψ polarization in Luca Micheletti's talk (Sept. 5th, 14:50)

J/ψ signal extraction in angular intervals

J/ $\psi \rightarrow \mu^+\mu^-$, 70–90%, 2.5 < y < 4, $p_{_{\rm T}}$ < 0.3 GeV/c

The J/ ψ signal is extracted in six cos θ intervals using the dimuon invariant mass distribution

Inclusive J/ψ polarization in Pb–Pb collisions

- First *y*-differential measurement of coherent J/ψ photoproduction cross section in peripheral Pb–Pb collisions (PC) with nuclear overlap at $\sqrt{s_{_{NN}}}$ = 5.02 TeV for $p_{_{T}}$ < 0.3 GeV/*c*
 - Shows a strong y-dependence similar to that observed in Ultraperipheral collisions (UPC).
 - Measurements are qualitatively described by a large number of vector meson photoproduction models developed for UPC and extended to PC, but fail at reproducing the *y*-dependence (similarly to UPC)
- **First inclusive J/\psi polarization measurement for** p_T < 0.3 GeV/*c* in peripheral Pb–Pb collisions with

nuclear overlap at $\sqrt{s_{_{\rm NN}}}$ = 5.02 TeV

• In **agreement with the UPC transverse polarization** measurement and **consistent with a major contribution from a photoproduction** process in the region of study.

Outlook

- The coherent J/ψ photoproduction cross section measurement can be exploited to extract photonuclear cross sections in two Bjorken-x regions [J.G. Contreras, Phys. Rev. C 96, 015203 (2017)]
- > ALICE Run 3 will provide a large Pb–Pb data sample
 - will permit to study J/ψ photoproduction in the most central collisions, to better constrain models (especially the role of spectator nucleons in the coherence condition)
 - Look at heavier vector mesons could become also possible to pin down possible QGP effects on the measured probes.

Backup

Luminosity in Run2

• LHC Run 2 (2015-2018) @ $\sqrt{s_{_{NN}}} = 5.02$ TeV,

 $L_{int} \sim 700 \ \mu b^{-1}$ of Pb–Pb data

 $L_{int} = 1.2 \text{ pb}^{-1} \text{ of } \text{pp data}$

collected with the dimuon trigger at 2.5 < y < 4

Photoproduction in UPC

Impulse approximation neglect nuclear shadowing, while data is consistent with models that consider the nuclear shadowing

Photon-emitter ambiguity

ALICE

- Each colliding nucleus could serve as a photon emitter, the other acts as a target (+/- y)
- Contribution from low/ high x_g $x_B = (m_{J/\psi}/\sqrt{s_{\rm NN}}) imes \exp(\pm y)$
- Proposed solution by [J. G. Contreras, PRC 96, 015203 (2017)] :
 - use PC measurement with the previous UPC measurement to disentangle the contribution from the low and high energy photon-nucleus interaction.
- Caveat: this suggestion considers the photon-nucleus cross sections in both PC and UPC to be the same.

Coherent J/ ψ photoproduction scenarios via photon-pomeron coupling at ALICE

- The coherent J/ψ photoproduction cross section is convolution of the photon flux and the photo-nucleus cross section.
- The γ -flux is extended from UPC \rightarrow PC by including the hadronic interactions.
- The (γ -A) cross section is extended from UPC \rightarrow PC
 - Includes a destructive interference effect.
 - considers the hadronic interactions effect using the spectators as emitters instead of the whole nucleus.
- Photon emitter-Pomeron emitter coupling scenarios with interference:
 — Nucleus+Nucleus
 - --- Nucleus+Spectator
 - Spectator+Nucleus
 - **"" Spectator+Spectator**

