Vector meson polarization in pp and Pb–Pb collisions with ALICE at the LHC

Luca Micheletti (CERN) on behalf of the ALICE Collaboration
Physics motivations

- Magnetic field
 - The most intense magnetic field in nature!
 - No strong b dependence
 - Lifetime increases from mid to forward rapidity

<table>
<thead>
<tr>
<th>B (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HICs</td>
</tr>
<tr>
<td>Pulsar</td>
</tr>
<tr>
<td>Earth</td>
</tr>
</tbody>
</table>
Physics motivations

Angular momentum
- The most vortical fluid in nature!
 📖 Nature 548, 62 (2017), STAR Collaboration
- Strong b dependence
 📖 PRC 77 (2008) 024906, Becattini et al.
- Affects system evolution / hadronization

| ω (s$^{-1}$) |
|-------------------|---|
| QGP | 10^{22} |
| Pulsar | 10^{2} |
| Tornado | 10^{-1} |
Polarization: an introduction

- Spin alignment w.r.t. a chosen direction \Leftrightarrow angular distribution of the decay products

$$W(\cos\theta) \propto (1 - \rho_{00}) + (3\rho_{00} - 1)\cos^2\theta$$

ρ_{00} = spin density matrix element

$\rho_{00} = 1/3$ no spin alignment

In quarkonia analyses:

- $W(\cos\theta, \phi) \propto \frac{1}{3+\lambda_\theta} \cdot (1 + \lambda_\theta \cos^2\theta + \cdots)$

λ_θ = polarization parameter

$\lambda_\theta = 0$ no spin alignment

$\lambda_\theta = \frac{1 - 3\rho_{00}}{1 + \rho_{00}}$

EPJC 69 (657-673), 2010, Faccioli et al.
Polarization: an introduction

- spin alignment w.r.t. a chosen direction \Leftrightarrow angular distribution of the decay products

$$W(\cos\theta) \propto (1 - \rho_{00}) + (3\rho_{00} - 1)\cos^2\theta$$

- ρ_{00} = spin density matrix element
- $\rho_{00} = 1/3$ no spin alignment

In quarkonia analyses:

$$W(\cos\theta, \phi) \propto \frac{1}{3+\lambda_{\theta}} \cdot (1 + \lambda_{\theta}\cos^2\theta + \cdots)$$

- λ_{θ} = polarization parameter
- $\lambda_{\theta} = 0$ no spin alignment

- **Reaction plane based frame**: axis orthogonal to the reaction plane in the collision center of mass frame
- **Helicity frame**: direction of vector meson in the collision center-of-mass frame
Vector meson production / polarization via 2 different mechanisms in HICs:

Recombination of polarized quark (antiquark) in the QGP

\[\rho_{00} = \frac{1 - P_q \cdot P_{\bar{q}}}{3 + P_q \cdot P_{\bar{q}}} = \begin{cases} 1/3^* \Rightarrow \overline{B} \\ < 1/3 \Rightarrow \overline{L} \end{cases} \]

* > 1/3 q=0, < 1/3 q≠0

Polarized quark (antiquark) fragmentation

\[\rho_{00} = \frac{1 + \beta \cdot P_q^2}{3 - \beta \cdot P_q^2} > 1/3 \]

? **Recombination scenario** at low \(\rho_T \) supported by light flavors (\(K^*0, \phi \)), valid also for heavy flavors?

? Heavy quarks are produced in the first stages of the collision (\(\tau_{cc} \sim 0.1 \text{ fm/c} \))

Possibly affected by the **magnetic field**!
The ALICE detector (Run 2)

Central Barrel
- Rapidity: $|y| < 0.9$

1. Inner Tracking System
2. Time Projection Chamber
3. Time-Of-Flight detector
4. V0 detectors

Muon Spectrometer
- Rapidity: $2.5 < y < 4$

1. Front absorber
2. Tracking system
3. Dipole magnet
4. Trigger system
The ALICE detector (Run 2)

Central Barrel
- Rapidity: $|y| < 0.9$

- I. Inner Tracking System
- II. Time Projection Chamber
- III. Time-Of-Flight detector
- IV. V0 detectors

Muon Spectrometer
- Rapidity: $2.5 < y < 4$
- I. Front absorber
- II. Tracking system
- III. Dipole magnet
- IV. Trigger system
The ALICE detector (Run 2)

Central Barrel
- Rapidity: |y| < 0.9

I. Inner Tracking System
II. Time Projection Chamber
 III. Time-Of-Flight detector
 IV. V0 detectors

Muon Spectrometer
- Rapidity: 2.5 < y < 4
 I. Front absorber
 II. Tracking system
 III. Dipole magnet
 IV. Trigger system
Polarization in pp collisions: baseline
J/ψ polarization in pp collisions

- Important to constrain charmonium production mechanisms in hadronic collisions

- Recent improvements in the theoretical description of J/ψ production with ICEM and CGC + NRQCD

 \[\text{JHEP 12 (2018) 057, Yan-Qing Ma et al., PRD 104 (2021) 9, Cheung, Vogt} \]

- General agreement among all results at LHC energies ($\lambda_\theta \sim 0$)

- Models reproduce a smooth trend vs p_T close to zero polarization

\[\text{LHCb data 7 TeV, ALICE data 7 TeV (inclusive J/ψ), ALICE data 8 TeV (inclusive J/ψ), CGC+NRQCD} \]
First measurement of the **prompt** and **non-prompt** D^{*+} spin alignment at the LHC

- Measurement performed with respect to the helicity axis:
 - **Prompt** D^{*+}: no evidence of polarization
 - **Non-prompt** D^{*+}: $\rho_{00} > 1/3$ due to the helicity conservation ($B(S = 0) \rightarrow D^{*+}(S = 1) + X$)

- Measurement in agreement with the prediction of PYTHIA 8 + EVTGEN
- Baseline for studies in Pb–Pb collisions
Polarization in Pb–Pb collisions
J/ψ polarization in Pb–Pb collisions

First measurement of quarkonium polarization with respect to the Reaction plane

- **Centrality** dependence:
 Small but significant (3.5σ) polarization observed in 40-60% centrality class and $2 < p_T < 6$ GeV/c

In the dilepton channel:

$$\lambda_\theta = \frac{1 - 3\rho_{00}}{1 + \rho_{00}}$$

$$\begin{cases}
\lambda_\theta > 0 & \Rightarrow \rho_{00} < 1/3 \\
\lambda_\theta < 0 & \Rightarrow \rho_{00} > 1/3
\end{cases}$$
J/ψ polarization in Pb–Pb collisions

First measurement of quarkonium polarization with respect to the Reaction plane

- Centrality dependence:
 Small but significant (3.5σ) polarization observed in 40-60% centrality class and $2 < p_T < 6 \text{ GeV}/c$

- p_T dependence:
 30-50%: significant deviation (3.9σ) at low transverse momentum ($2 < p_T < 4 \text{ GeV}/c$)

- In the dilepton channel:
 \[
 \lambda_\theta = \frac{1 - 3\rho_{00}}{1 + \rho_{00}} \quad \begin{cases}
 \lambda_\theta > 0 & \rho_{00} < 1/3 \\
 \lambda_\theta < 0 & \rho_{00} > 1/3
 \end{cases}
 \]

- Qualitatively in agreement with the scenario of quark recombination

- A comprehensive theory of quarkonium polarization in HICs is missing

PRL 131 (2023) 042303, ALICE Collaboration
D* polarization in Pb–Pb collisions

- **New ALICE preliminary measurement!**
 First measurement of D**+** polarization with respect to the Reaction plane

 - Multiclass classification algorithm based on BDT used to:
 - reduce combinatorial background
 - distinguish among prompt and non-prompt components

 - \(\rho_{00} \) extracted taking into account:
 - Event plane finite resolution
 - Feed-down contribution

![Graphs showing polarization measurements](image-url)
New ALICE preliminary measurement!

First measurement of D^{*+} polarization with respect to the Reaction plane

• p_T & centrality dependence:
 - $0 – 10\%$: ρ_{00} compatible with $1/3$
 - $30 – 50\%$: $\rho_{00} > 1/3$ at high p_T
D* polarization in Pb–Pb collisions

New ALICE preliminary measurement!

First measurement of D^{*+} polarization with respect to the Reaction plane

- p_T & centrality dependence:
 - $0 – 10\%$: ρ_{00} compatible with $1/3$
 - $30 – 50\%$: $\rho_{00} > 1/3$ at high p_T

- y dependence:
 - significant deviation at forward ($0.3 < |y| < 0.8$) than at mid ($|y| < 0.3$) rapidity
D* polarization in Pb–Pb collisions

- **New ALICE preliminary measurement!**
 First measurement of D**+** polarization with respect to the Reaction plane

- Qualitatively in agreement with:
 - $\rho_{00} < \frac{1}{3}$ quark recombination at low p_T
 - $\rho_{00} > \frac{1}{3}$ quark fragmentation at high p_T

- At high p_T the fragmentation of heavy quarks polarized by the magnetic field translates to $\rho_{00} > 1/3$?
 - ➢ Theory guidance needed!

![Graph showing ALICE Preliminary data for D**+** polarization](image-url)
Summary: before QM2023

<table>
<thead>
<tr>
<th></th>
<th>K^0</th>
<th>ϕ</th>
<th>D^+</th>
<th>J/ψ</th>
<th>$\psi(2S)$</th>
<th>χ_c</th>
<th>$\Upsilon(nS)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>pp</td>
<td>$\rho_{00} \sim 1/3$</td>
<td>$\rho_{00} \neq 1/3$</td>
<td>$\rho_{00} \sim 1/3$</td>
</tr>
<tr>
<td>Pb–Pb</td>
<td>$\rho_{00} < 1/3$ \text{\textcolor{red}{low p_t}}</td>
<td>$\rho_{00} < 1/3$ \text{\textcolor{red}{low p_t}}</td>
<td>$?$</td>
<td>$\rho_{00} < 1/3$ \text{\textcolor{red}{low p_t}}</td>
<td>$?$</td>
<td>$?$</td>
<td>$\rho_{00} \sim 1/3$</td>
</tr>
</tbody>
</table>
Summary: before QM2023

<table>
<thead>
<tr>
<th></th>
<th>K*⁰</th>
<th>φ</th>
<th>D*⁺</th>
<th>J/ψ</th>
<th>ψ(2S)</th>
<th>χc</th>
<th>Υ(nS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pp</td>
<td>$\rho_{00}\sim1/3$</td>
<td>$\rho_{00}\sim1/3$</td>
<td>$\rho_{00}\sim1/3$</td>
<td>$\rho_{00}\sim1/3$</td>
<td>$\rho_{00}\sim1/3$</td>
<td>$\rho_{00}\neq1/3$</td>
<td>$\rho_{00}\sim1/3$</td>
</tr>
<tr>
<td>Pb–Pb</td>
<td>$\rho_{00} < 1/3$</td>
<td>$\rho_{00} < 1/3$</td>
<td>?</td>
<td>$\rho_{00} < 1/3$</td>
<td>?</td>
<td>?</td>
<td>$\rho_{00}\sim1/3$</td>
</tr>
</tbody>
</table>

- **pp collisions**: light flavors, D*⁺ and J/ψ are compatible with **zero polarization**
Summary: new at QM2023

<table>
<thead>
<tr>
<th>K*0</th>
<th>ϕ</th>
<th>D*+</th>
<th>J/\psi</th>
<th>ψ(2S)</th>
<th>χ_c</th>
<th>Y(nS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pp</td>
<td>$\rho_{00}\sim 1/3$</td>
<td>$\rho_{00}\sim 1/3$</td>
<td>$\rho_{00}\sim 1/3$</td>
<td>$\rho_{00}\sim 1/3$</td>
<td>$\rho_{00}\neq 1/3$</td>
<td>$\rho_{00}\sim 1/3$</td>
</tr>
<tr>
<td>Pb–Pb</td>
<td>$\rho_{00} < 1/3$</td>
<td>$\rho_{00} < 1/3$</td>
<td>NEW! $\rho_{00} > 1/3$</td>
<td>$\rho_{00} < 1/3$</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

- **pp collisions**: light flavors, D**+ and J/\psi are compatible with zero polarization
- **Pb–Pb collisions**:
 - $\rho_{00} < 1/3$ for light flavors, J/\psi at low p_T \(\Rightarrow\) recombination scenario
 - $\rho_{00} > 1/3$ for D**+ at high p_T & fwd rapidity \(\Rightarrow\) quark fragmentation scenario
Backup
Magnetic field

LHC: Pb+Pb@2.76 ATeV
b=9.5 fm, x_T=0

eB_y [GeV/fm]

$\eta=1.5$
$\eta=1.0$
$\eta=0.5$
$\eta=0$

t [fm/c]

[Reference: PLB 768 (2017) 260, Das et al.]
Charmonia at LHC and RHIC

- Inclusive $J/\psi \rightarrow \mu^+\mu^-$, Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV and Au-Au $\sqrt{s_{NN}} = 0.2$ TeV

- ALICE, 2.5<y<4, 0-20% global syst. = ±8%
- PHENIX, 1.2<y<2.2, 0-20% global syst. = ±10%

- PLB 734 (2014), ALICE collaboration
D* polarization: random plane

ALICE Preliminary

30–50% Pb–Pb, $\sqrt{s_{NN}} = 5.02$ TeV

Prompt D^*, $0.3 < |y| < 0.8$

- Reaction plane
- Random axis

Stat. unc. only