







## The "Ridge"

- Two particle azimuthal correlations
  - $\Rightarrow$  Ridge: structure at  $\Delta \phi \sim 0$ 
    - → Hydrodynamic behavior
      - Collective effect
      - Flow harmonics

$$rac{1}{N_{
m trig}}rac{{
m d}N^{
m pair}}{{
m d}\Delta\phi} = rac{N_{
m assoc}}{2\pi}\left[1+\sum_n 2V_{n\Delta}\cos(n\Delta\phi)
ight]$$







### What about small systems?



## Searches for jet quenching at CMS









Phys. Rev. C 96 (2017) 015202

## Searches for jet quenching at CMS





Phys. Rev. C 96 (2017) 015202

JHEP 03 (2018) 181

 $\mathbf{x}_j = \frac{p_{\mathrm{T}}}{p_{\mathrm{T}}^{\mathrm{Leading jet}}}$ 



## Study of cold nuclear matter effects in pPb

- Understand initial stage/CNM is essential
  - Dijet pseudorapidity allows to map the distributions and add constraints for nPDFs
    - → Can be used to access the Bjorken-x (Shadowing, anti-shadowing and EMC)







## Study of cold nuclear matter effects in pPb

- Understand initial stage/CNM is essential
  - Dijet pseudorapidity allows to map the distributions and add constraints for nPDFs
    - → Can be used to access the Bjorken-x (Shadowing, anti-shadowing and EMC)









 $\eta^{\text{dijet}} = (\eta_1 + \eta_2)/2$ 

## Study of cold nuclear matter effects in pPb

- Understand initial stage/CNM is essential
  - Dijet pseudorapidity allows to map the distributions and add constraints for nPDFs
    - → Can be used to access the Bjorken-x (Shadowing, anti-shadowing and EMC)













### Dijets: nPDF constraints at CMS



- > Ratios are consistent with expectation from
  - $\Rightarrow$  shadowing ( $x \le 10^{-2}$ ;  $\eta_{\text{dijet}} > 1.5$ )
  - $\Rightarrow$  antishadowing (10<sup>-1</sup>  $\le x \le 10^{-2}$ ; -0.5  $< \eta_{\text{dijet}} < 1.5$ )
  - $\Rightarrow$  EMC ( $x \gtrsim 10^{-1}$ ;  $\eta_{\text{dijet}} < -0.5$ )
- > Evidence that gluon PDF (large Bjorken x) in Pb is strongly suppressed with respect to that in unbound nucleons





### Dijets: nPDF constraints at CMS



- shadowing ( $x \le 10^{-2}$ ;  $\eta_{\text{dijet}} > 1.5$ )
- antishadowing ( $10^{-1} \le x \le 10^{-2}$ ; -0.5 <  $\eta_{\text{dijet}}$  < 1.5)
- EMC ( $x \gtrsim 10^{-1}$ ;  $\eta_{\text{dijet}} < -0.5$ )
- Evidence that gluon PDF (large Bjorken x) in Pb is strongly suppressed with respect to that in unbound nucleons
- Data has been used to constrain nPDF's >











## Search for quenching in pPb collisions at CMS

Nuclear modification factor

$$\Rightarrow R_{\text{pPb}} = \frac{1}{A} \frac{d^2 \sigma_{\text{jet}}^{\text{pPb}} / dp_{\text{T}} d\eta}{d^2 \sigma_{\text{jet}}^{\text{pp}} / dp_{\text{T}} d\eta} = \frac{1}{A} \frac{1}{L} \frac{d^2 N_{\text{jet}}^{\text{pPb}} / dp_{\text{T}} d\eta}{d^2 \sigma_{\text{jet}}^{\text{pp}} / dp_{\text{T}} d\eta}$$









## Search for quenching in pPb collisions at CMS

Nuclear modification factor

$$\Rightarrow R_{\text{pPb}} = \frac{1}{A} \frac{d^2 \sigma_{\text{jet}}^{\text{pPb}} / dp_{\text{T}} d\eta}{d^2 \sigma_{\text{jet}}^{\text{pp}} / dp_{\text{T}} d\eta} = \frac{1}{A} \frac{1}{L} \frac{d^2 N_{\text{jet}}^{\text{pPb}} / dp_{\text{T}} d\eta}{d^2 \sigma_{\text{jet}}^{\text{pp}} / dp_{\text{T}} d\eta}$$

Dijets

CMS.

 $\Delta \phi_{1,2}$ 

Subleading jet (2)

- $\Rightarrow$  Azimuthal difference:  $\Delta \phi_{1,2}$
- $\Rightarrow$  Momentum imbalance  $x_j$ :  $p_{T,2}/p_{T,1}$



Leading jet (1)





deposit at HF



## High p<sub>T</sub> flow

- $\triangleright$  No signs of quenching, but non-zero elliptic flow in high-p<sub>T</sub> is observed
  - Different non-flow subtraction methods studied



From fragmentation of hard scattered partons

PbPb interpretation: path-length dependency of energy loss

See J. Viinikainen talk Wed. 9/6, 11:20AM

How about pPb? If no quenching is there?







## High p<sub>T</sub> flow

- $\triangleright$  No signs of quenching, but non-zero elliptic flow in high-p<sub> $\tau$ </sub> is observed
  - Different non-flow subtraction methods studied
  - Study also performed for different particle species







## Summary

- > pPb is an important tool to study and understand nuclear matter
  - Useful to study both initial and final states
    - → So far, no evidence of quenching
    - $\rightarrow$  Non-zero  $v_2$  observed in higher- $p_T$  in pPb collisions
      - observed for different particle species









#### In a near future ...

- Measurements at pPb@8.16 TeV are ongoing and coming soon!
  - Study of cold nuclear matter effects
    - → Additional constraints for nPDF models
  - Search for jet quenching using high multiplicity events
  - ⇒ and more ...







### The CMS detector



## Measurement of two particle correlations (I)



trigger particle (in p<sub>T</sub><sup>trg</sup>)





## Measurement of two particle correlations (I)

- Two particle correlations
  - trigger particle (in p<sub>T</sub><sup>trg</sup>)
  - associate particle (in p<sub>T</sub> ass)



# Dijet pseudorapidity distributions as function $E_{T}(I)$



# Dijet pseudorapidity distributions as function $E_{T}(II)$

- Ratio to all
  - Dow E<sub>T</sub>: ratio increased from negative to positive
  - ⇒ high E<sub>T</sub><sup>Pb</sup>: opposite behavior
- Possible effects
  - modifications of the PDFs due to the fluctuating size of the proton
  - impact parameter dependence of the nPDFs
  - among others...





Eur. Phys. J. C 74 (2014) 2951



#### The CMS detector



#### Flow with Jet veto

- Jet veto to remove events with jet pT > 20 GeV
  - $v_2$  increases when removing higher pT jets (as expected  $\rightarrow$  non-flow)
  - Not clear why subevent is showing the opposite behavior





