The "Ridge" - Two particle azimuthal correlations - \Rightarrow Ridge: structure at $\Delta \phi \sim 0$ - → Hydrodynamic behavior - Collective effect - Flow harmonics $$rac{1}{N_{ m trig}} rac{{ m d}N^{ m pair}}{{ m d}\Delta\phi} = rac{N_{ m assoc}}{2\pi}\left[1+\sum_n 2V_{n\Delta}\cos(n\Delta\phi) ight]$$ ### What about small systems? ## Searches for jet quenching at CMS Phys. Rev. C 96 (2017) 015202 ## Searches for jet quenching at CMS Phys. Rev. C 96 (2017) 015202 JHEP 03 (2018) 181 $\mathbf{x}_j = \frac{p_{\mathrm{T}}}{p_{\mathrm{T}}^{\mathrm{Leading jet}}}$ ## Study of cold nuclear matter effects in pPb - Understand initial stage/CNM is essential - Dijet pseudorapidity allows to map the distributions and add constraints for nPDFs - → Can be used to access the Bjorken-x (Shadowing, anti-shadowing and EMC) ## Study of cold nuclear matter effects in pPb - Understand initial stage/CNM is essential - Dijet pseudorapidity allows to map the distributions and add constraints for nPDFs - → Can be used to access the Bjorken-x (Shadowing, anti-shadowing and EMC) $\eta^{\text{dijet}} = (\eta_1 + \eta_2)/2$ ## Study of cold nuclear matter effects in pPb - Understand initial stage/CNM is essential - Dijet pseudorapidity allows to map the distributions and add constraints for nPDFs - → Can be used to access the Bjorken-x (Shadowing, anti-shadowing and EMC) ### Dijets: nPDF constraints at CMS - > Ratios are consistent with expectation from - \Rightarrow shadowing ($x \le 10^{-2}$; $\eta_{\text{dijet}} > 1.5$) - \Rightarrow antishadowing (10⁻¹ $\le x \le 10^{-2}$; -0.5 $< \eta_{\text{dijet}} < 1.5$) - \Rightarrow EMC ($x \gtrsim 10^{-1}$; $\eta_{\text{dijet}} < -0.5$) - > Evidence that gluon PDF (large Bjorken x) in Pb is strongly suppressed with respect to that in unbound nucleons ### Dijets: nPDF constraints at CMS - shadowing ($x \le 10^{-2}$; $\eta_{\text{dijet}} > 1.5$) - antishadowing ($10^{-1} \le x \le 10^{-2}$; -0.5 < η_{dijet} < 1.5) - EMC ($x \gtrsim 10^{-1}$; $\eta_{\text{dijet}} < -0.5$) - Evidence that gluon PDF (large Bjorken x) in Pb is strongly suppressed with respect to that in unbound nucleons - Data has been used to constrain nPDF's > ## Search for quenching in pPb collisions at CMS Nuclear modification factor $$\Rightarrow R_{\text{pPb}} = \frac{1}{A} \frac{d^2 \sigma_{\text{jet}}^{\text{pPb}} / dp_{\text{T}} d\eta}{d^2 \sigma_{\text{jet}}^{\text{pp}} / dp_{\text{T}} d\eta} = \frac{1}{A} \frac{1}{L} \frac{d^2 N_{\text{jet}}^{\text{pPb}} / dp_{\text{T}} d\eta}{d^2 \sigma_{\text{jet}}^{\text{pp}} / dp_{\text{T}} d\eta}$$ ## Search for quenching in pPb collisions at CMS Nuclear modification factor $$\Rightarrow R_{\text{pPb}} = \frac{1}{A} \frac{d^2 \sigma_{\text{jet}}^{\text{pPb}} / dp_{\text{T}} d\eta}{d^2 \sigma_{\text{jet}}^{\text{pp}} / dp_{\text{T}} d\eta} = \frac{1}{A} \frac{1}{L} \frac{d^2 N_{\text{jet}}^{\text{pPb}} / dp_{\text{T}} d\eta}{d^2 \sigma_{\text{jet}}^{\text{pp}} / dp_{\text{T}} d\eta}$$ Dijets CMS. $\Delta \phi_{1,2}$ Subleading jet (2) - \Rightarrow Azimuthal difference: $\Delta \phi_{1,2}$ - \Rightarrow Momentum imbalance x_j : $p_{T,2}/p_{T,1}$ Leading jet (1) deposit at HF ## High p_T flow - \triangleright No signs of quenching, but non-zero elliptic flow in high-p_T is observed - Different non-flow subtraction methods studied From fragmentation of hard scattered partons PbPb interpretation: path-length dependency of energy loss See J. Viinikainen talk Wed. 9/6, 11:20AM How about pPb? If no quenching is there? ## High p_T flow - \triangleright No signs of quenching, but non-zero elliptic flow in high-p_{τ} is observed - Different non-flow subtraction methods studied - Study also performed for different particle species ## Summary - > pPb is an important tool to study and understand nuclear matter - Useful to study both initial and final states - → So far, no evidence of quenching - \rightarrow Non-zero v_2 observed in higher- p_T in pPb collisions - observed for different particle species #### In a near future ... - Measurements at pPb@8.16 TeV are ongoing and coming soon! - Study of cold nuclear matter effects - → Additional constraints for nPDF models - Search for jet quenching using high multiplicity events - ⇒ and more ... ### The CMS detector ## Measurement of two particle correlations (I) trigger particle (in p_T^{trg}) ## Measurement of two particle correlations (I) - Two particle correlations - trigger particle (in p_T^{trg}) - associate particle (in p_T ass) # Dijet pseudorapidity distributions as function $E_{T}(I)$ # Dijet pseudorapidity distributions as function $E_{T}(II)$ - Ratio to all - Dow E_T: ratio increased from negative to positive - ⇒ high E_T^{Pb}: opposite behavior - Possible effects - modifications of the PDFs due to the fluctuating size of the proton - impact parameter dependence of the nPDFs - among others... Eur. Phys. J. C 74 (2014) 2951 #### The CMS detector #### Flow with Jet veto - Jet veto to remove events with jet pT > 20 GeV - v_2 increases when removing higher pT jets (as expected \rightarrow non-flow) - Not clear why subevent is showing the opposite behavior