

Recent results from fixedtarget collisions at LHCb

Kara Mattioli

on behalf of the LHCb collaboration

Laboratoire Leprince Ringuet, CNRS

Quark Matter 2023, Houston, Texas, USA 5 September 2023

Motivation: a complete picture of quarkonia formation and dissociation in nuclear matter

• Quarkonia "melting", or dissociation due to color charge screening, is a predicted signature of QGP formation

• A definitive observation of melting would be achieved by measuring the predicted "sequential suppression mechanism" **fully corrected for cold nuclear matter**

effects

• A comprehensive understanding of CNM effects requires measuring charmonia production in a variety of nuclear systems and kinematic phase space

Fixed target kinematics at the LHC

- Unique access to high Bjorken x and low Q^2 phase space
 - Probe nuclear anti-shadowing at $x \sim 0.02 0.3$
 - Complementary phase space to LHC collider experiments
- Variety of nuclear targets
 - Constrain nuclear PDFs
 - Study nuclear absorption (vary path length by varying A)

 \sqrt{s} (incident p or A beams)

• Unexplored center of mass energy of \sqrt{s} = 41 - 115 GeV

- LHCb is the only LHC experiment able to operate in a fixed-target mode
 - Access to rapidity in the center-of-mass system -2.5 $\leq y^* < o$

The Large Hadron Collider beauty (LHCb) Experiment: a collider and fixed-target experiment!

The LHCb Detector: Full tracking, particle identification, hadronic and electromagnetic calorimetry and muon ID in $2 < \eta < 5$

- Fixed-target mode in Run 2 possible by injecting gas into the Vertex Locator with a pressure of $\sim 10^{-7}$ mbar
- One of the circulating proton or Pb beams was used to produce pA or PbA collisions

<u>JINST 3, S08005 (2010)</u> <u>Int. J. Mod. Phys. A 30, 1530022 (2015)</u>

The LHCb fixed-target program

• SMOG: System for Measuring Overlap with Gas

- Noble gases (Ar, He, Ne) injected with a pressure of 10-7 mbar
- Luminosity of ~6 x 10²⁹ cm⁻² s⁻¹ per meter of gas
- Several *pA* and PbA data samples collected:

SMOG Run 2 data samples

Charm measurements with SMOG

System

Measurement

Publication

86.6 GeV

• J/ ψ and D^0 total and differential cross sections in y^* and p_T

PRL 122 (2019) 132002

68.5 GeV

- J/ ψ and ψ (2S) cross sections and production ratio
- D^0 cross section and asymmetry

new!

new!

EPJC 83 (2023) 625

EPJC 83 (2023) 541

110.4 GeV

• J/ ψ and D^0 differential distributions in y^* and p_T

PRL 122 (2019) 132002

68.5 GeV

• J/ ψ and D^0 cross section ratio EPJC 83 (2023) 658

first fixed-target AB measurement at the LHC!

Heavy flavor signal yields in pNe collisions

Event Selection:

- Primary vertex in [-200, -100] mm or [100, 150] mm to avoid residual pp collisions
- Heavy flavor hadron p_T < 8 GeV
- Heavy flavor hadron rapidity in 2.0 < y < 4.29
- For charmonia, two reconstructed muons with $p_{\rm T}$ > 500 MeV
- For D^0 , identified K^- and π^+ tracks with $p_{\rm T}$ > 250 MeV

Do: EPJC 83 (2023) 541 Charmonia: EPJC 83 (2023) 625

D^0 differential cross sections

- FONLL and PHSD predictions fail to reproduce the p_T distribution seen in data
- The Vogt 1% IC and the MS predictions both include 1% intrinsic charm contribution in the proton
- MS includes 10% recombination contributions, Vogt includes shadowing effects
- PDF and factorisation scale uncertainties are only included in FONLL calculations

LHCb data: EPJC 83 (2023) 541 Vogt: PRC 103 (2021) 035204 MS: PLB 835 (2022) 137530

FONLL: PRL 95 (2005) 122001, JHEP 05 (1998) 007 PHSD: PRC 96 (2017) 014905

D^0 Production Asymmetry

• The production asymmetry probes charm hadronization with a high-*x* valence quark:

$$\mathcal{A}_{\text{prod}} = \frac{Y_{\text{corr}}(D^0) - Y_{\text{corr}}(\overline{D}^0)}{Y_{\text{corr}}(D^0) + Y_{\text{corr}}(\overline{D}^0)}$$

- An asymmetry of \sim -15% is observed in the most negative y^* bin
- PYTHIA 8 comparisons do not capture the trends observed in the data
- Vogt predictions represent an upper limit on the asymmetry

LHCb data: EPJC 83 (2023) 541 Vogt: PRC 103 (2021) 035204 MS: PLB 835 (2022) 137530

J/ψ cross section measurement at $\sqrt{s_{NN}} = 68.5 \text{ GeV}$

• The measured J/ψ cross section in the fiducial measurement region of y^* in [-2.29, 0] was extrapolated to the full backward (negative) hemisphere using Pythia 8 and the CTo9MCS PDF set:

$$\sigma(p\text{Ne} \to J/\psi \text{ X}) = 1013 \pm 16 \text{ (stat.)} + 83 \text{ (sys.)} \text{ nb}^{-1}/\text{nucleon}$$

• Comparison to cross section measurements from other experiments shows a power law dependence on the center of mass energy:

LHCb fixed-target data (pNe, pHe) is filling in gaps in this data!

LHCb data: EPJC 83 (2023) 625

J/ψ differential cross sections

- LO CSM, HO: LO Color Singlet Model (CSM) predictions made using the HELAC-Onia generator with CT14NLO and nCTEQ15 PDF sets
- Vogt predictions use the Color Evaporation Model, EPPS16 nPDFs, and include contributions from nuclear absorption and multiple scattering
- The data does not differentiate between predictions with or without an intrinsic charm component included

LHCb data: EPJC 83 (2023) 625

LO CSM Helac-Onia: CPC 198 (2016) 238, CPC 184 (2013) 2562 Vogt: PRC 103 (2021) 035204

Relative production rate of J/ψ and $\psi(2s)$ mesons

- LHCb measurement: 1.67 ± 0.27 (stat) ± 0.10 (sys) %
- The relative production rate of $\psi(2S)$ to J/ψ mesons in pNe collisions is consistent with the rates measured on other nuclear targets and at other center of mass energies

LHCb data: EPJC 83 (2023) 625

From pA to PbA collisions

- With PbNe collisions, LHCb can begin to probe the energy density region where NA50 observed an anomalous J/ψ suppression
- On average, only 1 $c\overline{c}$ pair is expected to be produced per \sqrt{s} = 68.5 GeV PbNe collision

$$-\sigma_{c\overline{c}}^{5.5} \stackrel{TeV}{\approx} 10 \times \sigma_{c\overline{c}}^{200} \stackrel{GeV}{\approx} 100 \times \sigma_{c\overline{c}}^{70} \stackrel{GeV}{\approx} 1000 \times \sigma_{c\overline{c}}^{70} \stackrel{GeV}{\approx} 1000 \times \sigma_{c\overline{c}}^{20} \stackrel{GeV}{\approx} 100$$

- Measurements at RHIC give $N_{c\overline{c}}\approx$ 13, giving $N_{c\overline{c}}\approx$ 1 at $\sqrt{s}=68.5~{\rm GeV}$
- With $N_{c\overline{c}} \approx$ 1 on average, no significant effects from recombination are expected in PbA fixed-target collisions
- LHCb can also measure *p*Ne collisions at the same energy to measure the cold nuclear matter effects in Ne
- Can measure charmonium suppression fully controlled for recombination and CNM effects

EPJC 39, (2005) 335-345 PRL 94, 082301 (2005)

Heavy flavor signal yields in PbNe collisions

- Larger background than in *pA* collisions, but clean signal peaks are still observed proof of measurement feasibility in larger PbA systems
- Similar candidate selection as in pNe measurement
- Heavy flavor hadron p_T < 8 GeV
- Heavy flavor hadron y in 2.0 < y < 4.29

Candidate yields: $545 \text{ J}/\psi$, $5670 D^0$

EPJC 83 (2023) 658

Cross section ratios of J/ψ and D^0 production in PbNe and pNe collisions

- Compare J/ ψ production in large (PbNe) vs small (pNe) nuclear environment at the same \sqrt{s}
- $\sigma_{J/\psi}/\sigma_{D^0}$ shows little dependence on y^* and a strong dependence on $p_{\rm T}$

PbNe: EPJC 83 (2023) 658 **pNe:** EPJC 83 (2023) 625

Nuclear effects on hidden vs open charm

• Assuming: $\sigma_{D^0}^{AB} = \sigma_{D^0}^{pp} \times AB$ and $\sigma_{J/\psi}^{AB} = \sigma_{J/\psi}^{pp} \times AB^{\alpha}$, the cross section ratio is:

$$\frac{\sigma_{J/\psi}^{AB}}{\sigma_{D^0}^{AB}} = \frac{\sigma_{J/\psi}^{pp}}{\sigma_{D^0}^{pp}} \times AB^{\alpha - 1} = C \times AB^{\alpha - 1}$$

- Same functional form for the ratio as a function of the number of collisions (N_{coll})
- α < 1: indicates that J/ ψ mesons experience additional nuclear effects than D^0 mesons
- Within the current precision, a linear trend is observed between pNe and central PbNe events and no conclusive evidence of anomalous J/ψ suppression or formation of a hot deconfined medium is observed

PbNe: EPJC 83 (2023) 658

pNe: EPJC 83 (2023) 625

Charm in Run 3 with LHCb SMOG2

- SMOG2 is a dedicated cell for gas injection installed just before the LHCb VELO
- Can run in parallel with collider mode pp physics data taking at LHCb
- Equipped with a sophisticated Gas Feed System to store and inject 8 different gases: H₂, D₂, Ar, Kr, Xe, He, Ne, N₂, O₂
- From 18 minutes of pAr data-taking in 2022: 4200 D^0 and 443 J/ψ candidates!

See talk by S.
Mariani Wed. at
12:20pm for more
details on SMOG2
commissioning!

LHCb-FIGURE-2023-008

Conclusions

- Fixed target experiments at the LHC provide opportunities to study quarkonia production in a wide variety of nuclear systems and in a unique region of phase space
- New measurements of D^0 and charmonium production in pNe and PbNe collisions at $\sqrt{s_{NN}} = 68.5$ GeV have been performed by LHCb
- Measurements of the D^0 and J/ψ production cross sections and the D^0 production asymmetry in pNe collisions have been compared to several theoretical models with different charm hadronization mechanisms and cold nuclear matter effects
- Comparisons of the J/ψ and D^0 cross sections in PbNe collisions do not show conclusive evidence for the presence of anomalous suppression or the formation of a hot nuclear medium
- The first Run 3 data has been taken with LHCb's fixed target upgrade, SMOG2, and includes excellent D^0 and J/ψ signal yields collected during an 18-minute Ar injection
- Many quarkonia measurements are possible with SMOG2 and can help disentangle different CNM effects and hot vs. cold QCD matter effects

Thank you for your attention!

LHCb VELO Vacuum Incident in January 2023

The VELO detector is installed in a secondary vacuum inside the LHC primary vacuum.

The primary and secondary volumes are separated by two thin walled Aluminium boxes, the RF foils

On 10th January 2023, during a VELO warm up in neon, there was a loss of control of the protection system

A pressure differential of 200 mbar built up between the two volumes, whereas the foils are designed to withstand 10 mbar only

Initial investigations show no damage to the VELO modules; sensors show correct leakage currents, microchannels show no leaks

RF foils have suffered plastic deformation up to 14 mm and have to be replaced. Major intervention, planning under study

- Replace now (delay), or replace at the end of the year (run in 2023 with VELO partially open)
- Physics programme of 2023 is significantly affected, commissioning of Upgrade I systems can proceed as planned

Early measurements possible with SMOG2

- J/ ψ and ψ (2S) production in pAr collisions
 - Baseline for measurement in PbAr collisions
 - Comparison to pNe measurement to probe CNM effects as a function of system size
 - Both quarkonia states are needed for future comparison with a χ_c measurement in pAr to provide a baseline for suppression measurements in PbAr
- J/ ψ and D^o production in PbAr collisions
 - QGP expected to be produced
 - *p*Ar, PbAr, PbNe measurements can help disentangle hot vs. cold nuclear effects that contribute to quarkonia dissociation

<u>Later timescale (high statistics needed):</u>

- **Upsilon production in** *p***Ar collisions** study CNM effects as a function of bound state size and quark flavor content (e.g. parton energy loss effects)
- Multi-differential $\psi(2S)$ measurements in pAr collisions complement differential J/ψ measurements and test theoretical models of quarkonium production
- J/ ψ production in pH₂ collisions necessary baseline for J/ ψ R_{AA} measurements

Other measurements possible with SMOG2

• Possible determination of $c\overline{c}$ hadronization time

- Parameterization of nuclear absorption mechanism proposed by E. Ferreiro, E. Maurice, and F. Fleuret
- Proper time of $c\overline{c}$ pair of mass m traversing length L in a nucleus:

 $\tau = \frac{t}{\gamma} = \frac{Lm}{p} = \frac{Lm}{\sqrt{p_z^2 + p_T^2}} = \frac{Lm}{\sqrt{m_T^2 \sinh^2 y + p_T^2}}$

- More pA data in a variety of nuclear targets needed for hadronization time extraction - possible with SMOG2!

Quarkonia production in additional collision systems

- pD_2 , pKr, pXe, pN_2 , pO_2 collisions all possible
- PbH₂, PbKr, PbXe...
- **Drell-Yan** measurements
- Exclusive production (photoproduction) of J/ψ on a variety of nuclear targets

 $c\overline{c}$ formation time: <u>EPJC 82</u>, (2022) 201

Expected number of $c\overline{c}$ pairs in PbNe collisions

• From previous measurements of inclusive $c\overline{c}$ pair production at different centre of mass energies:

$$\sigma_{c\overline{c}}^{5.5~TeV} \approx 10 \times \sigma_{c\overline{c}}^{200~GeV} \approx 100 \times \sigma_{c\overline{c}}^{70~GeV} \approx 1000 \times \sigma_{c\overline{c}}^{20~GeV}$$

• PHENIX measured the number of electrons from semileptonic charm hadron decays in AuAu collisions at \sqrt{s} = 200 GeV. The yield scales with $N_{\rm coll}$ (expected if no nuclear effects on the total $c\overline{c}$ production)

$$N_{c\overline{c}} = \frac{N_{c\overline{c}}}{T_{AA}} \times T_{AA} = (597x10^{-3}) \text{ mb} \times 22.8 \text{ mb}^{-1} \approx 13$$

TABLE I. Centrality bin, number of NN collisions, nuclear overlap function, charm cross section per NN collision, and total charm multiplicity per NN collision, in $\sqrt{s_{NN}} = 200$ GeV Au + Au reactions.

Centrality (%)	N_{coll}	$T_{AA} \text{ (mb}^{-1}\text{)}$	$\frac{1}{T_{AA}} \frac{dN_{c\bar{x}}}{dy} \big _{y=0} (\mu b)$	$N_{c\overline{c}}/T_{AA}$ (μ b)
Minimum bias	258 ± 25	6.14 ± 0.45	$143 \pm 13 \pm 36$	$622 \pm 57 \pm 160$
0-10	955 ± 94	22.8 ± 1.6	$137 \pm 21 \pm 35$	$597 \pm 93 \pm 156$
10-20	603 ± 59	14.4 ± 1.0	$137 \pm 26 \pm 35$	$596 \pm 115 \pm 158$
20-40	297 ± 31	7.07 ± 0.58	$168 \pm 27 \pm 45$	$731 \pm 117 \pm 199$
40-60	91 ± 12	2.16 ± 0.26	$193 \pm 47 \pm 52$	$841 \pm 205 \pm 232$
60-92	14.5 ± 4.0	0.35 ± 0.10	$116 \pm 87 \pm 43$	$504 \pm 378 \pm 190$

 $\sigma_{c\overline{c}}$: PRC 94 (2016) 054908 PHENIX results: PRL 94, 082301 (2005)

Projected luminosities for different SMOG2 gas species in Run 3

System	$\sqrt{s_{ m NN}}$	< pressure>	$ ho_S$	\mathcal{L}	Rate	Time	$\int \mathcal{L}$
	$({ m GeV})$	(10^{-5} mbar)	(cm^{-2})	$({\rm cm}^{-2}{\rm s}^{-1})$	(MHz)	(s)	(pb^{-1})
$p\mathrm{H}_2$	115	4.0	2.0×10^{13}	6×10^{31}	4.6	2.5×10^6	150
$p\mathrm{D}_2$	115	2.0	1.0×10^{13}	3×10^{31}	4.3	0.3×10^{6}	9
$p\mathrm{Ar}$	115	1.2	0.6×10^{13}	1.8×10^{31}	11	2.5×10^{6}	45
$p{ m Kr}$	115	0.8	0.4×10^{13}	1.2×10^{31}	12	2.5×10^{6}	30
$p\mathrm{Xe}$	115	0.6	0.3×10^{13}	0.9×10^{31}	12	2.5×10^{6}	22
$p{ m He}$	115	2.0	1.0×10^{13}	3×10^{31}	3.5	3.3×10^{3}	0.1
$p{ m Ne}$	115	2.0	1.0×10^{13}	3×10^{31}	12	3.3×10^{3}	0.1
$p\mathrm{N}_2$	115	1.0	0.5×10^{13}	1.5×10^{31}	9.0	3.3×10^{3}	0.1
$p\mathrm{O}_2$	115	1.0	0.5×10^{13}	1.5×10^{31}	10	3.3×10^{3}	0.1
PbAr	72	8.0	4.0×10^{13}	1×10^{29}	0.3	6×10^5	0.060
PbH_2	72	8.0	4.0×10^{13}	1×10^{29}	0.2	1×10^5	0.010
$p{ m Ar}$	72	1.2	0.6×10^{13}	1.8×10^{31}	11	3×10^5	5

LHCb-PUB-2018-015

Expected heavy flavor yields with SMOG2

• Large increase in heavy flavor statistics compared to SMOG:

	SMOG	SMOG	SMOG2
	published result	largest sample	example
	$p{\rm He@87~GeV}$	$p{\rm Ne@69~GeV}$	$p{\rm Ar@115~GeV}$
Integrated luminosity	$7.6 \mathrm{nb^{-1}}$	$\sim 100 \ {\rm nb}^{-1}$	$\sim 45~{ m pb}^{-1}$
syst. error on J/ψ x-sec.	7%	6 - $7%$	2 - 3 %
J/ψ yield	400	15k	15M
D^0 yield	2000	100k	150M
Λ_c^+ yield	20	1k	1.5M
$\psi(2S)$ yield	negl.	150	150k
$\Upsilon(1S)$ yield	negl.	4	7k
Low-mass Drell-Yan yield	negl.	5	9k

Anomalous J/ ψ suppression observed by NA50

EPJC 39, (2005) 335-345

Centrality at LHCb

Centrality classes for PbNe collisions

JINST 17 (2022) P05009

Charged particle multiplicities for SMOG2 PbA and NA50 PbPb

Peripheral collisions						Central co	Central collisions	
System \ centrality	100 – 60%	60 – 50%	50 – 40%	40 – 30%	30 – 20%	20 – 10 %	10 –	0%
PbNe – 71 GeV	108.6	254.4	392.5	588.0	814.5	1086.0	1494	4.9
PbAr – 71 GeV	123,6	308,8	496,5	806,6	1228,3	1711,9	2372	2,7
PbKr – 71 GeV	196,9	533,6	919,1	1451,2	2205,5	2986,6	4084	1,3
PbXe – 71 GeV	201,4	581,7	1031,0	1587,3	2400,2	3541,7	5065	5,7
PbPb – 17 GeV	124,2	331,6	605,9	919,6	1338,7	2035,8	2980),5