

Bhawani Singh

on behalf of the ALICE Collaboration

Technical University of Munich

Quark Matter 2023, Houston, Texas

Many-body systems

 Properties of nuclei and hypernuclei cannot be described satisfactorily with two-body forces only

Many-body systems

 Properties of nuclei and hypernuclei cannot be described satisfactorily with two-body forces only

L. Girlanda et al., PRC 102, 064003 (2020)

 Description of a dense nuclear matter such as neutron stars requires three-body interactions

D. Lonardoni et al., PRL 114, 092301 (2015)

Many-body systems

 Properties of nuclei and hypernuclei cannot be described satisfactorily with two-body forces only

L. Girlanda et al., PRC 102, 064003 (2020)

D. Lonardoni et al., PRL 114, 092301 (2015)

Femtoscopic correlations allow for access to three-body interaction

$$C(k^*) = \mathcal{N} \frac{N_{\text{same}}(k^*)}{N_{\text{mixed}}(k^*)} = \int S(\vec{r}^*) \left| \psi(\vec{k}^*, \vec{r}^*) \right|^2 d^3 \vec{r}^* \xrightarrow{k^* \to \infty} 1$$

experimental definition theoretical definition

$$C(k^*) = \mathcal{N} \frac{N_{\text{same}}(k^*)}{N_{\text{mixed}}(k^*)} = \int S(\vec{r}^*) \left| \psi(\vec{k}^*, \vec{r}^*) \right|^2 d^3 \vec{r}^* \xrightarrow{k^* \to \infty} 1$$

experimental definition theoretical definition

Collisions system sizes

Pb-Pb: 5-10 fm

p-Pb: 2-4 fm

pp: 1–1.5 fm

$$C(k^*) = \mathcal{N} \frac{N_{\text{same}}(k^*)}{N_{\text{mixed}}(k^*)} = \int S(\vec{r}^*) \left| \psi(\vec{k}^*, \vec{r}^*) \right|^2 d^3 \vec{r}^* \xrightarrow{k^* \to \infty} 1$$

experimental definition theoretical definition

Collisions system sizes

Pb-Pb: 5-10 fm

p-Pb: 2-4 fm

pp: 1-1.5 fm

$$C(k^*) = \mathcal{N} \frac{N_{\text{same}}(k^*)}{N_{\text{mixed}}(k^*)} = \int S(\vec{r}^*) \left| \psi(\vec{k}^*, \vec{r}^*) \right|^2 d^3 \vec{r}^* \xrightarrow{k^* \to \infty} 1$$

experimental definition theoretical definition

Kaon-deuteron system in Pb-Pb collisions

- K^{\pm} -d correlation functions in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$
 - 3 centrality intervals: 0-10%, 10-30%, and 30-50%

Lednický-Lyuboshits approach

- Coulomb effects + strong interaction (via scattering parameters)
- 6 simultaneous fits to extract scattering parameters

K[±]-d scattering parameter: first measurement ever

- K⁺-d system
 - Measured scattering parameters $\Re f_0$ in agreement with the calculations

K[±]-d scattering parameter: first measurement ever

- K⁺-d system
 - Measured scattering parameters $\Re f_0$ in agreement with the calculations
- K⁻-d system
 - Obtained $\Re f_0$ and $\Im f_0$ agree with most of the available calculations

Femtoscopy in pp collisions

Source common for all baryon-baryon pairs in pp collisions

Using p−p and p−Λ
 pairs where interaction
 is constrained well

$$m_{\mathrm{T}} = \sqrt{k_{\mathrm{T}}^2 + \langle m \rangle^2}$$
$$k_{\mathrm{T}} = \frac{1}{2} \left| \vec{p}_{\mathrm{T},1} + \vec{p}_{\mathrm{T},2} \right|$$

experimental definition theoretical definition

Femtoscopy in pp collisions

Source common for all baryon-baryon pairs in pp collisions

Constrain source with common m_T scalling

$$C(k^*) = \mathcal{N} \frac{N_{\text{same}}(k^*)}{N_{\text{mixed}}(k^*)} = \int S(\vec{r}^*) \left| \psi(\vec{k}^*, \vec{r}^*) \right|^2 d^3 \vec{r}^* \xrightarrow{k^* \to \infty} 1$$

experimental definition theoretical definition

K⁺–d correlation in pp collisions

- K⁺–d as an **effective two-body** system: Lednický-Lyuboshits approach^[1]
- Source size: $1.35^{+0.04}_{-0.05}$ fm
- K⁺-d scattering parameters
 - ER (effective-range approximation):

$$a_0 = -0.47 \text{ fm}, d_0 = -1.75 \text{ fm}^{[2]}$$

- FCA (fixed-center approximation): $a_0 = -0.54$ fm, $d_0 = 0$ fm^[3]

New: ALICE Coll. arXiv:2308.16120

First measurement in pp collisions

Deuterons are produced in shorter distances together with hadrons LLI PUB-556034

[1] R. Lednický, Phys. Part. Nuclei 40, 307–352 (2009)

[2] provided by Prof. Johann Haidenbaur

[3] provided by Prof. Tetsuo Hyodo

p—d correlation in pp collisions

- p–d as an **effective two-body**: Lednický-Lyuboshits approach^[1]
- Source size: $1.08^{+0.06}_{-0.06}$ fm
- Strong interaction: constrained from the scattering measurements^[2]

- [1] R. Lednický, Phys. Part. Nuclei 40, 307–352 (2009)
 - [2] Measured scattering parameters of p-d ref in the backup

p—d correlation in pp collisions

- p–d as an **effective two-body**: Lednický-Lyuboshits approach^[1]
- Source size: $1.08^{+0.06}_{-0.06}$ fm
- Strong interaction: constrained from the scattering measurements^[2]
- The picture of two point-like particles does not work
 - Pauli blocking at work for p-(pn) at short distances
 - Asymptotic strong interaction: not sufficient for distances ~1 fm

[1] R. Lednický, Phys. Part. Nuclei 40, 307–352 (2009)

[2] Measured scattering parameters of p-d ref in the backup

p-d correlation in pp collisions

- p–d as an **effective two-body**: Lednický-Lyuboshits approach^[1]
- Source size: $1.08^{+0.06}_{-0.06}$ fm
- Strong interaction: constrained from the scattering measurements^[2]
- The picture of two point-like particles does not work
 - Pauli blocking at work for p-(pn) at short distances
 - Asymptotic strong interaction: not sufficient for distances ~1 fm

[1] R. Lednický, Phys. Part. Nuclei 40, 307–352 (2009)

[2] Measured scattering parameters of p-d ref in the backup

• Start from p-(pn) dynamics that form p-d state:

$$C_{pd}(k^*) = \frac{1}{16A_d} \sum_{m_2, m_1} \int \rho^5 d\rho \, d\Omega \, \left| \Psi_{m_2, m_1 \vec{k}^*} \right|^2 \, \frac{e^{-\rho^2/4R_M^2}}{(4\pi R_M^2)^3}$$

 $\Psi_{m_2, m_1 \vec{k}^*}$ the three-nucleon wave function, p–(pn) to p–d state asymptotically

M. Viviani, BS et al. arXiv:2306.02478v1 [nucl-th] (2023) (submitted to PRC)

Calculations: theory collaborators

Michele Viviani, Alejandro Kievsky, and Laura Marcucci from Pisa group Sebastian König from NC state University

• Start from p-(pn) dynamics that form p-d state:

$$C_{pd}(k^*) = \frac{1}{16A_d} \sum_{m_2, m_3} \int \rho^5 d\rho \, d\Omega \, \left| \Psi_{m_2, m_1 \vec{k}^*} \right|^2 \frac{e^{-\rho^2/4R_M^2}}{(4\pi R_M^2)^3}$$

- $\Psi_{m_2,m_1\vec{k}^*}$ the three-nucleon wave function, p–(pn) to p–d state asymptotically
- $R_{\rm M} = 1.43 \pm 0.16 \, {\rm fm}$ nucleon-nucleon source size in p-d (obtained from analysis)

M. Viviani, BS et al. arXiv:2306.02478v1 [nucl-th] (2023) (submitted to PRC)

Calculations: theory collaborators

Michele Viviani, Alejandro Kievsky, and Laura Marcucci from Pisa group Sebastian König from NC state University

• Start from p-(pn) dynamics that form p-d state:

$$C_{pd}(k^*) = \frac{1}{16A_d} \sum_{m_2, m_1} \int \rho^5 d\rho \, d\Omega \, \left| \Psi_{m_2, m_1 \vec{k}^*} \right|^2 \frac{e^{-\rho^2/4R_M^2}}{(4\pi R_M^2)^3}$$

- $\Psi_{m_2,\,m_1\,ec{k}^*}$ the three-nucleon wave function, p–(pn) to p–d state asymptotically
- $R_{\rm M} = 1.43 \pm 0.16 \, {\rm fm}$ nucleon-nucleon source size in p-d (obtained from analysis)
- A_d is the deuteron formation probability using deuteron wave function

M. Viviani, BS et al. arXiv:2306.02478v1 [nucl-th] (2023) (submitted to PRC)

Calculations: theory collaborators

Michele Viviani, Alejandro Kievsky, and Laura Marcucci from Pisa group Sebastian König from NC state University

• Coulomb only: disagree!

[1] B. R. B. Wiringa et al. Phys. Rev. C 51, 38

- Coulomb only: disagree!
- Argonne v18(2N) + Urbana IX (genuine three-body force) potentials^[1,2]
 - s-wave only: not sufficient!

[1] B. R. B. Wiringa et al. Phys. Rev. C 51, 38

- Coulomb only: disagree!
- Argonne v18(2N) + Urbana IX (genuine three-body force) potentials^[1,2]
 - s-wave only: not sufficient!
 - All partial waves up to d-waves: describes data within n_{σ} ~1 for k^* up to 400 MeV/c

[1] B. R. B. Wiringa et al. Phys. Rev. C 51, 38

- Coulomb only: disagree!
- Argonne v18(2N) + Urbana IX (genuine three-body force) potentials^[1,2]
 - s-wave only: not sufficient!
 - All partial waves up to d-waves: describes data within n_{σ} ~1 for k^* up to 400 MeV/c
- Pionless EFT NLO (s+p+d waves):
 - Agree with data within n_{σ} ~2.5 for k^* < 120 MeV/c

[1] B. R. B. Wiringa et al. Phys. Rev. C 51, 38

- Coulomb only: disagree!
- Argonne v18(2N) + Urbana IX (genuine three-body force) potentials^[1,2]
 - s-wave only: not sufficient!
 - All partial waves up to d-waves: describes data within n_{σ} ~1 for k^* up to 400 MeV/c
- Pionless EFT NLO (s+p+d waves):
 - Agree with data within n_{σ} ~2.5 for k^* < 120 MeV/c
 - Dynamics of the three-body p–(pn) system at short distances!
 - Inclusion of the higher partial waves

[1] B. R. B. Wiringa et al. Phys. Rev. C 51, 38[2] B. S. Pudliner et al. Phys. Rev. Lett. 74, 4396

Role of genuine three-body force

- Computed correlation function with and without genuine three-body force
 - Up to 5% effect of genuine three-body interaction
 - Run 2: limited statistics does not allow for resolution to see the effect in the measurement
- LHC Run 3: ~2 orders of increase in pair statistics
 - Possibility to perform m_T differential analysis

Avenue for the study of hadron-deuteron systems, including charm and strange hadrons!

p-p correlation: LHC Run 3

- LHC Run 3 pp collisions at 13.6 TeV: 50 times increased p-p pair statistics
- Fixed source for all interaction studies using femtoscopy

p-p correlation function measured in $m_{\rm T}$ and multiplicity differential

Poster 462 by Anton Riedel

 m_{T} -scaling of the effective source size for p-p pairs in different multiplicity classes

p-p correlation: LHC Run 3

- LHC Run 3 pp collisions at 13.6 TeV: 50 times increased p-p pair statistics
- Fixed source for all interaction studies using femtoscopy

Poster 462 by Anton Riedel

p-p correlation function measured in $m_{\rm T}$ and multiplicity differential

 m_{T} -scaling of the effective source size for p-p pairs in different multiplicity classes

Summary and outlook

Summary:

- K-d in pp and Pb-Pb collisions: the first measurement ever
 - Deuterons follow source size scaling common for all baryon-baryon pairs in pp collisions
 - Provide constraints on $K^{+/-}$ -d interaction => useful to study kaonic bound-states
- p-d: can be described with full three-body calculations
 - Correlation of deuteron-proton: access to three-body system
- p-p correlation in Run 3 LHC
 - Femtoscopic source constrained for all interaction studies

Outlook: more data more physics!

- Deuterons can be combined to other hadrons to study many-body interaction
- Final constraints on three-body interactions will arrive in Run 3 and Run 4!

Summary and outlook

Summary:

- K-d in pp and Pb-Pb collisions: the first measurement ever
 - Deuterons follow source size scaling common for all baryon-baryon pairs in pp collisions
 - Provide constraints on $K^{+/-}$ -d interaction => useful to study kaonic bound-states
- p-d: can be described with full three-body calculations
 - Correlation of deuteron-proton: access to three-body system
- p-p correlation in Run 3 LHC
 - Femtoscopic source constrained for all interaction studies

Outlook: more data more physics!

- Deuterons can be combined to other hadrons to study many-body interaction
- Final constraints on three-body interactions will arrive in Run 3 and Run 4!

Thanks for your time!

additional slides

ALICE detector: Run 2

Time-Of-Flight detector

- Identification of nuclei and hadrons through their time-of-flight

V0 detectors

- Trigger

- Centrality/multiplicity determination

Time Projection Chamber

- -Tracking
- -Identification of nuclei and hadrons via specific energy loss

Inner Tracking System

- -Track reconstruction
- -Reconstruction of primary and decay vertices
- -Identification of lowmomentum particles

ALICE: ITS and TPC upgrades

Kaon-deuteron system in Pb-Pb collisions

- K[±]-d correlation functions in
 Pb-Pb collisions at √s_{NN} = 5.02 TeV
 - 3 centrality intervals: 0–10%,
 10–30%, and 30–50%

Lednicky´-Lyuboshitz approach

 Coulomb effects + strong interaction (via scattering parameters)

K±d source size in Pb-Pb

- 3 radii as a function of centrality
 - for 3 centralities (the same radius for all particle pairs)
- Source size increases with multiplicity!

Source size for p-d and K+-d pairs

• Two main contributions:

- Collective effects: results in a core emission profile Gaussian core source (constrained theoretical p-p correlation with AV18 interaction with Fermi-Dirac statistics, Coulomb, and strong interaction)
- Increase: strongly decaying resonances require source correction

Source	mean value:p-d	mean value:K+-d
r _{core}	0.99±0.05 fm	1.04±0.04 fm

ALICE Coll. PLB 811 135849 (2020)

Source size for p-d and K+-d pairs

 The source radius is effectively increased by short-lived strongly decaying resonances (ct $\approx r_{\text{core}}$) e.g. Δ -resonances in case of protons

Source	mean value:p-d	mean value:K+-d
r _{core}	0.99±0.05 fm	1.04±0.04 fm
r _{eff}	1.08±0.06 fm	1.35 ^{+0.04} _{-0.05} fm

Hadron-deuteron pairs are created at very small distances in pp collisions at the LHC!

(1) ϕ (1020) corrected as feed-down

(1)

Lednicky Model

- For distinguishable particles
 - \circ starting from the <u>scattering parameters</u> \Rightarrow define the <u>s-wave two-particle relative wave function</u>
 - oconsiders Coulomb effects

• Coulomb-corrected wave function for final-state interactions (Lednicky): <u>arxiv.org/abs/nucl-th/0501065</u>

$$\psi_{-k^*}(r^*) = e^{i\delta_c} \sqrt{A_c(\eta)} \left[e^{-ik^*r^*} F\left(-i\eta, 1, i\zeta\right) + f_c(k^*) \frac{\tilde{G}(\rho, \eta)}{r^*} \right]$$

- f_c : Coulomb normalised scattering amplitude for strong interaction
- $F(-i\eta, 1, i\zeta)$: confluent hypergeometric function
- $\tilde{G}(\rho,\eta)$: combination of singular and regular Coulomb function, describes asymptotic behaviour of wavefunction
 - ⇒ to obtain two-particle correlation we can use Koonin-Pratt formula

Effective two-body approach

- For distinguishable pointlike particles: Lednicky approach
 - Considers Coulomb effects + strong interaction (via scattering parameters)
 - Only s-wave interaction
- p-d scattering parameters from constrained to the p-d scattering data

S = 1/2		S = 3/2	
$a_0(\mathrm{fm})$	$d_0(\mathrm{fm})$	$a_0(\mathrm{fm})$	$d_0(\mathrm{fm})$
$1.30^{+0.20}_{-0.20}$		$11.40^{+1.80}_{-1.20}$	$2.05^{+0.25}_{-0.25}$
$2.73^{+0.10}_{-0.10}$	$2.27^{+0.12}_{-0.12}$	$11.88^{-0.10}_{+0.40}$	$2.63^{+0.01}_{-0.02}$
4.0		11.1	
0.024		13.8	
$-0.13^{+0.04}_{-0.04}$		$14.70^{+2.30}_{-2.30}$	

Van Oers, Brockmann et al. Nucl. Phys. A 561-583 (1967) J.Arvieux et al. Nucl. Phys. A 221 253-268 (1973) E.Huttel et al. Nucl. Phys. A 406 443-455 (1983) A.Kievsky et al. PLB 406 292-296 (1997) T.C.Black et al. PLB 471 103-107 (1999)

K+-d scattering parameters

- ER (effective-range approximation): $a_0 = -0.47$ fm, $d_0 = -1.75$ fm^[2]
- FCA (fixed-center approximation): $a_0 = -0.54$ fm, $d_0 = 0.0$ fm^[3]
- [1] R. Lednicky, Phys. Part. Nuclei 40, 307–352 (2009)
- [2] provided by Prof. Johann Haidenbaur
- [3] provided by Prof. Tetsuo Hyodo

Femtoscopic correlation

- The femtoscopic correlation may have background/contributions from
 - Particles from weak decays
 - Particles from material knock-outs
 - Misidentifications

$$C_{femto}(k^*) = \lambda_0 C_0 \oplus \lambda_1 C_1 \oplus \lambda_2 C_2 \oplus ...$$

Contributions from:

genuine

feed-down misidentifications

- Quantification of the contributions to the pairs done by the lambda parameters $\lambda_{ii} = \mathcal{P}_i \cdot f_i \times \mathcal{P}_i \cdot f_i$
 - Purity of the individual particles (\mathcal{P}_i)
 - Feed-down fractions (f_i)

p-d correlation with d as composite object

The three body wave function with proper treatment of 2N and 3N interaction at very short distances goes to a p-d state.

- Three-body wavefunction for p-d: $\Psi_{m_2,m_1}(x,y)$ describing three-body dynamics, anchored to p-d scattering observables.
 - x = distance of p-n system within the deuteron, y is the p-d distance
 - m₂ and m₁ deuteron and proton spin
- $\Psi_{m_2,m_1}(x,y)$ three-nucleon wave function asymptotically behaves as p-d state:

$$\Psi_{m_2,m_1}(\boldsymbol{x},\boldsymbol{y}) = \Psi_{m_2,m_1}^{(\text{free})} + \sum_{LSJ}^{J \leq \overline{J}} \sqrt{4\pi} i^L \sqrt{2L+1} e^{i\sigma_L} (1m_2 \frac{1}{2} m_1 | SJ_z) (L0SJ_z | JJ_z) \widetilde{\Psi}_{LSJJ_z}.$$

Asymptotic form Strong three-body interaction

- $ightharpoonup ilde{\Psi}_{LSJJ_z}$ describe the configurations where the three particles are close to each other
- $\rightarrow \Psi_{m_1,m_2}^{(\mathrm{free})}$ an asymptotic form of p–d wave function

New theory paper:

M. Viviani et al arXiv:2306.02478

p-d as three-body system

Starting with the p-pn state that goes into p-d state:

- Nucleons with the Gaussian sources distributions

$$A_d C_{pd}(k) = \frac{1}{6} \sum_{m_2,m_1} \int d^3 r_1 d^3 r_2 d^3 r_3 \left[S_1(r_1) S_1(r_2) S_1(r_3) |\Psi_{m_2,m_1}|^2 \right],$$

- $\Psi_{m_2,m_1}(x,y)$ three-nucleon wave function asymptotically behaves as p-d state
- A_d is the deuteron formation probability using deuteron wavefunction
- Final definition of the correlation with p-p source size R_{M} :

$$A_d C_{pd}(k) = \frac{1}{6} \sum_{m_2, m_1} \int \rho^5 d\rho d\Omega \frac{e^{-\rho^2/4R_M^2}}{(4\pi R_M^2)^3} |\Psi_{m_2, m_1}|^2.$$

M. Viviani et al <u>arXiv:2306.02478</u>

Mrówczyński et al Eur. Phys. J. Special Topics 229, 3559 (2020)

Role p-pn dynamics only in Coulomb case

- Complete p-pn dynamics, but the strong interaction is **absent** at very short-range!
 - r^{NN}eff =1.43±0.16 fm (nucleon-nucleon distance)
- In the case of the two-body picture Coulomb-only interaction differs from the one using the p-(pn) dynamics
 - $r^{pd}_{eff} = 1.08 \pm 0.06$ fm (proton-deuteron distance)
 - More repulsion due to the Pauli-blocking

Sensitivity to the dynamics of the three-body p-(pn) system even for Coulomb case

Deuteron as composite object: p-pn dynamics

- Complete p-pn dynamics, but the strong interaction is absent at very short-range!
 - $r^{NN}_{eff} = 1.43 \pm 0.16$ fm (nucleon-nucleon distance)
 - Coulomb-only interaction coincidently appears in the data (despite the large scattering lengths)
 - Coulomb+strong interaction using Born approximation (neglecting short-range strong interaction) and proper p–pn dynamics

Sensitivity to the dynamics of the three-body p-(pn) system at short distance

Partial wave decomposition of p-d

Contribution from different partial waves in p-d

AV18+UIX vs NVIa3 3N Chiral potentials

Precise calcualtion using AV18+UIX as well NVIa3/3N chiral potentials

Total wavefunction for p-d system

Hyperspherical formalism

$$\begin{split} \Psi_{LSJJ_z} &= \sum_{n,\alpha} \frac{u_{n,\alpha}(\rho)}{\rho^{5/2}} \mathcal{Y}_{n,\alpha}(\Omega) \\ &+ \frac{1}{\sqrt{3}} \sum_{\ell}^{\text{even perm.}} \left\{ Y_L(\hat{\boldsymbol{y}}_\ell) \Big[\varphi^d(i,j) \chi(\ell) \Big]_S \right\}_{JJ_z} \frac{F_L(\eta,ky_\ell)}{ky_\ell} \\ &+ \sum_{L'S'} T_{LS,L'S'}^J \frac{1}{\sqrt{3}} \sum_{\ell}^{\text{even perm.}} \left\{ Y_{L'}(\hat{\boldsymbol{y}}_\ell) \Big[\varphi^d(i,j) \chi(\ell) \Big]_{S'} \right\}_{JJ_z} \\ &\times \frac{\overline{G}_{L'}(\eta,ky_\ell) + i F_{L'}(\eta,ky_\ell)}{ky_\ell} \; . \end{split}$$

Cumulant: measure for three-body effects

Kubo, J. Phys. Soc. Jpn. 177 (1962)

c₃ (Q₃) allows to isolate effects associated with the genuine three-body interactions

- p-p-p and p-p-\bar{p} cumulants : nonzero
 - Hint of a genuine three-body effect
- Possible interpretations:
 - Pauli blocking at three-particle level
 - Three-body strong interaction

Cumulant: measure for three-body effects

Kubo, J. Phys. Soc. Jpn. 177 (1962)

c₃ (Q₃) allows to isolate effects associated with the genuine three-body interactions

- ullet p-p- Λ cumulants : compatible with zero
 - The ongoing Run 3 and future Run 4 at the LHC with a much larger data sample will allow for precise measurements
 - →p-p-Λ interaction plays a crucial role in constraining the equation of state of the neutron stars¹

Three-body femtoscopy with ALICE

- Extending femtoscopy to three-particle correlations: p-p-p and p-p-Λ¹
- New way to study interaction in hadron-triplets

[1] <u>arXiv:2206.03344</u>

Three-body femtoscopy with ALICE

- Extending femtoscopy to three-particle correlations: p-p-p and p-p-Λ¹
- New way to study interaction in hadron-triplets

How to interpret the results? Interplay between 2-body and 3-body forces

[1] arXiv:2206.03344

Steps to genuine three-body interaction

Kubo, J. Phys. Soc.

Jpn. 177 (1962)

• First study underlying two body correlations with a data driven and a phase-space projector methods

Another calculation at hand

- Hadron-Deuteron Correlations and Production of Light Nuclei in Relativistic Heavy-Ion Collisions: arxiv.org/abs/1904.08320
 - hadron-deuteron correlation function which carries information about the source of the deuterons
 - Allows one to determine whether a deuteron is directly emitted from the fireball or if it is formed afterwards
 - Conclusion:
 - The theoretical p-d correlation function is strongly dependent on the source size

Fig. 2. p-D correlation function