

Quarkonia production in ultraperipheral lead-lead collisions at LHCb

Xiaolin Wang
South China Normal University

Quark Matter 2023 2023.9.3-9, Houston, Texas, USA

9/6/2023

Ultra-peripheral PbPb Collisions

> Ultra-Peripheral Collisions(UPCs):

- Two incoming nuclei bypass each other with an impact parameter greater than the sum of their radii.
- Reactions in which two ions interact via their cloud of semi-real photons.
- The photon-induced interactions are enhanced by the strong electromagnetic field of the nucleus.
- Photon-induced quarkonium production: A $q\bar{q}$ loop created by the photon interaction with a pair of gluon exchange (pomeron) to produce a quarkonium($c\bar{c}$, $b\bar{b}$).
- Non-resonant background: mainly $\gamma\gamma \rightarrow \mu^{+}\mu^{-}$.

J/ψ production in UPC

- \triangleright Coherent J/ ψ production, photon interacts with a pomeron emitted by the entire nucleus.
- \triangleright Incoherent J/ ψ production, the photon interacts with a pomeron emitted from a single nucleon within the target nucleus.
- \triangleright J/ ψ from the feed-down of coherent and incoherent $\psi(2S)$ production.
- ➤ Study of coherent charmonium production could constrain the gluon Parton Distribution Functions in nuclei.
- The ratio of J/ ψ and ψ (2S) is helpful to constrain the choice of the vector meson wave function in dipole scattering models. [e.g. PLB 772 (2017) 832; PRC (2011) 011902]

Coherent J/ψ production

Incoherent J/ψ production

LHCb Detector

> LHCb detector is a single-arm forward Vertex Detector **spectrometer** fully instrumented in unique kinematic coverage: 2<n<5.

Reconstruct vertices Decay time resolution: 45 fs

Impact parameter resolution: 20 μm

A high precision detector with excellent particle identification, precise vertex and track reconstruction.

[IJMPA 30 (2015) 1530022]

(5 GeV/c-100 GeV/c)

Event selection

- ➤ Dataset: J/ $\psi \to \mu^+ \mu^-$ and $\psi(2S) \to \mu^+ \mu^-$ events from PbPb collisions at $\sqrt{s} = 5.02$ TeV taken in 2018 with luminosity 228 \pm 10 μb^{-1} .
- \triangleright Cross-sections of coherent J/ ψ and ψ (2S) photon-production are measured as:

$$\frac{\mathrm{d}\sigma_{\psi}^{\mathrm{coh}}}{\mathrm{d}x} = \frac{N_{\psi}^{\mathrm{coh}}}{\mathcal{L} \times \varepsilon_{\mathrm{tot}} \times \mathcal{B}(\psi \to \mu^{+}\mu^{-}) \times \Delta x}$$

- > Event selection:
- only two long tracks reconstructed for muons, with acceptance cuts:

$$2.0 < \eta^{\mu^{\pm}} < 4.5, p_{T}^{\mu^{\pm}} > 700 MeV,$$

 $p_{T}^{\mu^{+}\mu^{-}} < 1 GeV, |\Delta \phi_{\mu^{+}\mu^{-}}| > 0.9\pi$

 HeRSCheL detector is used to further purify the selection. [2018 JINST 13 P04017]

Signal extraction: step1

- Signal extraction step1: Charmonium
 yields are extracted from dimuon massfit.
 - Double-sided crystal ball function for the J/ψ and $\psi(2S)$ yields.
 - Exponential function for the nonresonant background are extracted from dimuon massfit.

Signal extraction: step2

- \triangleright Signal extraction step2: Coherent component is extracted from a $\ln(p_T^2)$ fit.
- ➤ All signal pdfs are estimated using the <u>STARLight</u> generator and the LHCb detector simulation.
- ➤ The shape of background taken from the side-band method, then the normalization is fixed from mass fit.

Cross-sections results

JHEP 06 (2023) 146

➤ Integrated cross-section and ratio (most precise measurements in the forward region at this moment):

$$\begin{split} \sigma^{coh}_{J/\psi} &= 5.\,965 \pm 0.\,059(stat) \pm 0.\,232(syst) \pm 0.\,262(lumi) \; mb, \\ \sigma^{coh}_{\psi(2S)} &= 0.\,923 \pm 0.\,086(stat) \pm 0.\,028(syst) \pm 0.\,040(lumi) \; mb, \\ \sigma^{coh}_{\psi(2S)}/\sigma^{coh}_{J/\psi} &= 0.\,155 \pm 0.\,014(stat) \pm 0.\,003(syst). \end{split}$$

> Systematic uncertainties:

Source	Relative uncertainty [%]	
	$\sigma_{J/\psi}^{ m coh}$	$\sigma_{\psi(2S)}^{\mathrm{coh}}$
Tracking efficiency	0.5 – 2.0	0.5 - 2.0
PID efficiency	0.9 – 1.6	0.9 – 1.6
Trigger efficiency	2.7 – 3.7	2.1 – 2.5
HERSCHEL efficiency	1.4	1.4
Background estimation	1.2	1.2
Signal shape	0.04	0.04
Momentum resolution	0.9 – 34	1.3 – 27
Branching fraction	0.6	2.1
Luminosity	4.4	4.4

Cross-sections in rapidity

- The most precise coherent J/ψ production measurement in PbPb UPC in forward rapidity to date.
- ➤ The high precision LHCb data are of great value in theoretical model fine-tuning.
- ➤ Compare to most recent theoretical calculations:
 - p-QCD calculations: include new NLO
 p-QCD calculation PDF uncert. and
 factorization scale uncert.
 - Color-dipole models: draw different model tuning options as theoretical variations.

Cross-sections in rapidity

- The first precise coherent ψ(2S) production measurement in PbPb UPC in forward rapidity at LHC.
- Compare to most recent theoretical calculations of p-QCD calculations and color-dipole models.

GKSZ: PRC 93 (2016) 055206, PRC 95 (2017) 025204, GMMNS: PRD 96 (2017) 094027, EPJC 40 (2005) 519, MSL: PLB 772 (2017) 832, PoS DIS2014 (2014) 069, KKNP: PRD 107 (2023) 054005

CCK: PRC 97 (2018) 024901

Cross-sections in rapidity

- The first cross-section ratio between coherent J/ ψ and ψ (2S) vs. rapidity measurement in forward rapidity region at LHC.
- Compare to most recent theoretical calculations of p-QCD calculations and color-dipole models.

GKSZ: PRC 93 (2016) 055206, PRC 95 (2017) 025204, GMMNS: PRD 96 (2017) 094027, EPJC 40 (2005) 519, MSL: PLB 772 (2017) 832, PoS DIS2014 (2014) 069, KKNP: PRD 107 (2023) 054005 CCK: PRC 97 (2018) 024901

Cross-sections in p_T

JHEP 06 (2023) 146

GKSZ: PRC 93 (2016) 055206, PRC 95 (2017) 025204, **MSL**: PLB 772 (2017) 832, PoS DIS2014 (2014) 069,

- \triangleright The first coherent J/ ψ and ψ (2S) production measurement in p_T in PbPb UPC.
- Compare to most recent theoretical calculations of p-QCD calculations and color-dipole models.

Compare with previous results

JHEP 06 (2023) 146

- Comparison with the coherent J/ψ production measurement with LHCb 2015, ALICE and CMS results.
 - The J/ψ measurement is compatible with LHCb2015, ALICE and CMS results.
 - The compatibility between the new results and 2015 measurement is about 2σ.

Conclusion

- Measurements of exclusive coherent J/ ψ and ψ (2S) production and their cross-section ratio in UPC PbPb collisions using 2018 dataset.

 JHEP 06 (2023) 146
 - The most precise coherent J/ψ production measurement in forward rapidity region in PbPb UPC to date.
 - The first coherent $\psi(2S)$ measurement in forward rapidity region in PbPb UPC at LHC.
 - The first measurement about coherent J/ ψ and ψ (2S) production cross-sections vs. p_T in PbPb UPC.
- The results are compatible with current theoretical predictions, providing strong constraints for the fine-tuning of the different models.

Thanks!

Back up

HeRSCheL detector

- ➤ HeRSCheL(High Rapidity Shower Counters for LHCb), is a set of plastic scintillators located in the LHC tunnel on both sides of the LHCb interaction point, in order to extend the pseudo-rapidity coverage of the LHCb in the high-rapidity regions either side of the interaction point.
- ➤ HeRSCheL detector extends the LHCb forward coverage up to a pseudo-rapidity of around 10.
- ➤ HeRSCheL detector is used to cut the component with large momentum, for example, the incoherent component.

