

Constraining (anti)nuclei measurements relevant for astrophysics with ALICE

Chiara Pinto on behalf of the ALICE Collaboration

Technische Universität München

Quark Matter 2023 Houston, TX – Sept., 6th

Antinuclei production:

 pp, pA and (few) AA reactions between primary cosmic rays and the interstellar medium

Antinuclei production:

- pp, pA and (few) AA reactions between primary cosmic rays and the interstellar medium
- dark-matter annihilation processes

Primary cosmic ray (90% p, 8% ⁴He)

Interstellar medium (90% p, 8% ⁴He)

Antinuclei production:

- pp, pA and (few) AA reactions between primary cosmic rays and the interstellar medium
- dark-matter annihilation processes

- High Signal/Noise ratio ($\sim 10^2 10^4$) at low E_{kin} expected by models
- To correctly interpret any future measurement, we need precise knowledge of
 - 1. antinuclei production
 - 2. annihilation

Antinuclei production:

- pp, pA and (few) AA reactions between primary cosmic rays and the interstellar medium
- dark-matter annihilation processes

- High Signal/Noise ratio ($\sim 10^2 10^4$) at low E_{kin} expected by models
- To correctly interpret any future measurement, we need precise knowledge of
 - antinuclei production
 - annihilation

Nature Phys. (2023) 19, 61–71

Modelling the production of (anti)nuclei

Statistical models (SHM)

- Hadrons emitted statistically from a source in local chemical equilibrium
- $dN/dy \propto \exp(-m/T_{chem})$
- $T_{\text{chem}} \approx 156 \text{ MeV}$

Andronic et al., Nature 561, 321–330 (2018)

Modelling the production of (anti)nuclei

Statistical models (SHM)

- Hadrons emitted statistically from a source in local chemical equilibrium
- $dN/dy \propto \exp(-m/T_{chem})$
- $T_{\text{chem}} \approx 156 \text{ MeV}$

Coalescence models

- (Anti)nuclei arise from the overlap of the (anti)nucleons phase-space distributions with the Wigner density of the bound state
- Microscopic description

• Coalescence parameter B_A connected to coalescence probability

$$B_A(p_{\rm T}^p) = E_A \frac{d^3 N_A}{d p_A^3} / \left(E_p \frac{d^3 N_p}{d p_p^3} \right)^A \Big|_{p_{\rm T}^p = p_{\rm T}^A/A}$$

Butler et al., Phys. Rev. 129 (1963) 836
 Mahlein et al., arxiv:2302.12696

Andronic et al., Nature 561, 321–330 (2018)

Nuclear production in and out of jets

- Powerful tool to investigate coalescence mechanism is the study of nuclear production in and out of jets
- In jets nucleons are created close to each other in phase-space

 \rightarrow Study B_2 in and out of jets: jets obtained simply by subtracting the UE from the Toward region (Jet + UE)

Toward: $|\Delta \phi| < 60^{\circ}$

Transverse: $60^{\circ} < |\Delta \phi| < 120^{\circ}$

Away: $|\Delta \phi| > 120^{\circ}$

★ T. Martin et al., Eur. Phys. J. C (2016) 76: 299

Nuclear production in and out of jets

- Powerful tool to investigate coalescence mechanism is the study of nuclear production in and out of jets
- In jets nucleons are created close to each other in phase-space

 \rightarrow Study B_2 in and out of jets: jets obtained simply by subtracting the UE from the Toward region (Jet + UE)

- Studying the antideuteron production in jets in small systems (pp, pA) is important to understand and model nuclear production
- Production models are crucial to study cosmic rays
- Antideuteron in the Galaxy is produced in interactions of cosmic rays $(p, {}^{4}He)$ with kinetic energies of ~300 GeV

Toward: $|\Delta \phi| < 60^{\circ}$

Transverse: $60^{\circ} < |\Delta \phi| < 120^{\circ}$

Away: $|\Delta \phi| > 120^{\circ}$

T. Martin et al., Eur. Phys. J. C (2016) 76: 299
 Serksnyte et al., Phys. Rev. D 105 (2022) 8, 083021

- Enhanced deuteron coalescence probability in jets wrt UE is observed for the first time in pp collisions
- Due to the reduced distance in phase space of hadrons in jets compared to those out of jets → favors coalescence picture

Fhys.Rev.Lett. 131 (2023) 4, 042301

- B_2 in-jet in p—Pb is larger than B_2 in-jet in pp \rightarrow could be related to the different particle composition of jets in pp and p—Pb
- B_2 in UE in p—Pb is smaller than B_2 in UE in pp due to the larger source size in p—Pb $_1 \ge _{\text{Phys.Rev.C }99 (2019) 024001}$ (pp⁽¹⁾: $r_0 \sim 1$ fm, p—Pb⁽²⁾: $r_0 \sim 1.5$ fm)

Coalescence parameter vs. rapidity

- ALICE measurements cover the midrapidity region (|y|<0.5), while astrophysical models extrapolate to forward region
- Current acceptance of ALICE detector allows us to extend the measurement of antinuclei up to y = 0.7
- Rapidity and p_T dependence of B_2 is extrapolated to forward rapidity using coalescence model + Pythia 8.3 and EPOS as event generators

Antideuteron flux predictions vs. y

- Model predictions based on ALICE measurements are used as input to calculate antideuteron flux from cosmic rays* → dominant background in dark matter searches
- Most of the antideuteron yield from $|y| < 1.5 \rightarrow$ well in reach with future ALICE3⁽¹⁾ detector acceptance ($|y| \lesssim 4$)

Production models needed in astrophysics

- → Rapidity coverage is in reach of accelerator experiments
- → Extrapolation to lower energies (~GeV) is needed

Antinuclei production:

- pp, pA and (few) AA reactions between primary cosmic rays and the interstellar medium
- dark-matter annihilation processes

- High Signal/Noise ratio ($\sim 10^2 10^4$) at low E_{kin} expected by models
- To correctly interpret any future measurement, we need precise knowledge of
 - antinuclei production
 - annihilation

chiara.pinto@cern.ch

ALICE measured the **inelastic cross section** for **antinuclei** using the LHC as antimatter factory and the ALICE detector as a target

ALICE measured the **inelastic cross section** for **antinuclei** using the LHC as antimatter factory and the ALICE detector as a target

Antimatter-to-matter ratio

 Measurement of reconstructed anti³H/³H ratio and compare to MC simulation expectations

Sketch adapted from: Sketch Phys. (2023) 19, 61–71

ALICE measured the **inelastic cross section** for **antinuclei** using the LHC as antimatter factory and the ALICE detector as a target

TOF/TPC-matching ratio

 Measurement of reconstructed anti³H_{TOF}/anti³H_{TPC} ratio and compare to MC simulation expectations

ALICE measured the **inelastic cross section** for **antinuclei** using the LHC as antimatter factory and the ALICE detector as a target

Antimatter-to-matter ratio

 Measurement of reconstructed anti³H/³H ratio and compare to MC simulation expectations

TOF/TPC-matching ratio

 Measurement of reconstructed anti³H_{TOF}/anti³H_{TPC} ratio and compare to MC simulation expectations

ALICE measured the inelastic cross section for antinuclei using the LHC as antimatter factory and the ALICE detector as a

target

antid: Phys.Rev.Lett. 125, 162001 (2020)

ALICE measured the inelastic cross section for antinuclei using the LHC as antimatter factory and the ALICE detector as a

target

antid: ₱ Phys.Rev.Lett. 125, 162001 (2020) anti³He: ₱ Nature Phys. (2023) 19, 61–71

ALICE measured the inelastic cross section for antinuclei using the LHC as antimatter factory and the ALICE detector as a

- Production of antinuclei measured at accelerators are crucial input in astrophysical searches for dark matter
- Antinuclear production measurements in and out of jets in pp and p—Pb collisions helps to further constrain the coalescence model

- Production of antinuclei measured at accelerators are crucial input in astrophysical searches for dark matter
- Antinuclear production measurements in and out of jets in pp and p—Pb collisions helps to further constrain the coalescence model
- Measurements of antinuclear production vs. rapidity used to extrapolate B_2 at forward rapidity \rightarrow predict antinuclear flux from cosmic rays

- Production of antinuclei measured at accelerators are crucial input in astrophysical searches for dark matter
- Antinuclear production measurements in and out of jets in pp and p—Pb collisions helps to further constrain the coalescence model
- Measurements of antinuclear production vs. rapidity used to extrapolate B_2 at forward rapidity \rightarrow predict antinuclear flux from cosmic rays
- Annihilation processes have been studied with ALICE, from antid to ${}^{3}\overline{\text{He}}$ and ${}^{3}\overline{\text{H}}$

- Production of antinuclei measured at accelerators are crucial input in astrophysical searches for dark matter
- Antinuclear production **measurements in and out of jets** in pp and p—Pb collisions helps to further constrain the coalescence model
- Measurements of antinuclear production vs. rapidity used to extrapolate B_2 at forward rapidity \rightarrow predict antinuclear flux from cosmic rays
- Annihilation processes have been studied with ALICE, from antid to ${}^{3}\overline{\text{He}}$ and ${}^{3}\overline{\text{H}}$
- More to come with **LHC Run3** increased statistics!

I. Vorobyev's talk Wed. 8:50

- Production of antinuclei measured at accelerators are crucial input in astrophysical searches for dark matter
- Antinuclear production measurements in and out of jets in pp and p—Pb collisions helps to further constrain the coalescence model
- Measurements of antinuclear production vs. rapidity used to extrapolate B_2 at forward rapidity \rightarrow predict antinuclear flux from cosmic rays
- Annihilation processes have been studied with ALICE, from antid to ${}^{3}\overline{\text{He}}$ and ${}^{3}\overline{\text{H}}$
- More to come with **LHC Run3** increased statistics!

I. Vorobyev's talk Wed. 8:50

Thank you for your attention!

Backup

Spectra as a function of rapidity

- Current acceptance of ALICE detector allows to extend the measurement of antinuclei up to y = 0.7
- All rapidity classes show a common trend with y_i for both species (ratio to |y| < 0.1 is ~ 1)

Production of (anti)nuclei

I. Vorobyev's talk

Wed. 8:50

- Production of (anti)nuclei has been extensively measured by ALICE
- Coalescence model describes well the data for A = 2, 3
- ALICE measurements cover the midrapidity region (|y| < 0.5), while astrophysical models extrapolate to forward region **arxiv:2212.04777**

Strategy

ALICE

IDEA

- Study of rapidity dependence of antiprotons and antideuterons
- Coalescence parameter B_2 as a function of rapidity
- Comparison with a simple coalescence model

DATASET

- pp collisions @ 13 TeV, full 2016 + 2017 + 2018 ESD tracks
- $\sim 1.6 \cdot 10^9$ events (after selection cuts)

MC (<u>JIRA</u>)

• 2016 pp, 13 TeV - Pythia8 Monash2013 + injected (hyper)nuclei – based on G4

RESULTS

- Measurements up to y=0.7
- y-differential measurements will be possible with ALICE 3 (rapidity coverage $\rightarrow |y| \lesssim 4$) (eprint:1902.01211 [physics.ins-det])

Analysis Note

- B₂ in-jet even more enhanced than B₂ in UE in p—Pb collisions (factor ~25)
- B₂ in-jet in p—Pb is larger than B₂ in-jet in pp
 → could be related to the different particle composition of jets in pp and p—Pb
- B₂ in UE in p—Pb is smaller than B₂ in UE in pp due to the larger source size in p—Pb (pp¹: r₀~ 1 fm, p—Pb²: r₀~ 1.5 fm)

- Fhys.Rev.Lett. 131 (2023) 4, 042301
- ¹ € Phys.Rev.C 99 (2019) 024001
- ² Phys.Rev.Lett. 123 (2019) 112002

- B_2 in-jet ~ 15 times larger than B_2 in UE
- Enhanced deuteron coalescence probability in jets wrt UE is observed for the first time in pp collisions
- Due to the reduced distance in phase space of hadrons in jets compared to those out of jets → favors coalescence picture

Fhys.Rev.Lett. 131 (2023) 4, 042301

- B_2 in-jet ~ 15 times larger than B_2 in UE
- Enhanced deuteron coalescence probability in jets wrt UE is observed for the first time in pp collisions
- Due to the reduced distance in phase space of hadrons in jets compared to those out of jets → favors coalescence picture

Fhys.Rev.Lett. 131 (2023) 4, 042301

- B₂ in-jet even more enhanced than B₂ in UE in p—Pb collisions (factor ~25)
- B₂ in-jet in p—Pb is larger than B₂ in-jet in pp
 → could be related to the different particle
 composition of jets in pp and p—Pb
- B₂ in UE in p—Pb is smaller than B₂ in UE in pp due to the larger source size in p—Pb (pp¹: r₀~ 1 fm, p—Pb²: r₀~ 1.5 fm)

- Fhys.Rev.Lett. 131 (2023) 4, 042301
- ¹ € Phys.Rev.C 99 (2019) 024001
- ² Phys.Rev.Lett. 123 (2019) 112002

Transparency of Galaxy to anti³He

 E_{kin}/A (GeV/A)

 10^{-1}

Fransparency =
$$\frac{\text{flux with annihilation}}{\text{flux without annihilation}} = \frac{\text{local}}{\text{local}} (\frac{\text{local}}{\text{local}})$$
 for bkg (DM)

Fluxes are model dependent

- Our Galaxy is rather constantly transparent to ³He passage
- Data are in good agreement with Geant4 predictions
- Uncertainties on Transparency only due to absorption measurements (10-20%)

anti³He: ► Nature Phys. (2023) 19, 61–71