

ALICE Upgrades timeline

FoCal: next talk by Florian Jonas

Upgrade motivations and requirements

Main physics motivations:

- **Heavy flavours** hadrons at low p_T (charm and beauty interaction and hadronisation in the QGP)
- Quarkonia down to $p_T = 0$ (melting and regeneration in the QGP)
- Thermal dileptons, photons, vector mesons (thermal radiation, chiral symmetry restoration)
- Precision measurements of light (hyper)nuclei and searches for charmed hypernuclei

Main requirements:

- Increased effective acceptance (acceptance x readout rate)
- Improved tracking and vertexing performance at low p_T for background suppression
- Preserve in ALICE 2 and enhance in ALICE 3 particle identification (PID) capabilities

ALICE ITS3

Replacing the 3 innermost layers with new ultra-light, truly cylindrical layers:

- Reduced material budget (from 0.35% to 0.05% X0)
- Closer to the interaction point (from 23 to 18 mm)
- Improved vertexing performance and reduced backgrounds for heavy-flavour signals and for low-mass dielectrons

ALICE ITS3

18 mm 24 mm 30 mm

The idea is to make use of the flexible nature of thin silicon:

- Thinned down sensors to 50 µm, making them flexible
- Bent to the target radii and mechanically held in place by carbon foam spacers

nology lation Tec Another key ingredient is the stitching:

- ITS2 sensors are 30x15 mm (limited by reticle size), our target is 280x94 mm
- For such a large area stitching is mandatory: a true single piece of silicon

R&D started on new sensors to face the new challenges:

65nm CMOS imaging technology tested for validation

280mm **15mm**

94mm

All three innovative developments pioneered by ALICE and never used before in HEP!

Sensor bending

Bending procedure tested in different ways and at different radii on ITS2 ALPIDEs:

No degradation, work as flat chips! <u>2021-166280</u>

Down-scaled mock-up of the final ITS3 was produced with six bent ALPIDEs (µITS3):

 Results from beam tests show no differences in performance among different bending radii

Also 65 nm technology prototypes are being tested, new results soon!

Sensor technology validation

Tower Partners Semiconductors (TPSCo) 65 nm CMOS imaging technology result of the effort of ALICE ITS3 together with CERN EP R&D

- Validated in terms of charge collection efficiency, detection efficiency and radiation hardness
- Several pixel variants (pitch 10-25 μm) were tested both in laboratory and in beam tests
- Excellent detection efficiency over large threshold range for the ITS3 radiation hardness requirement (10 kGy + 10¹³ 1MeV n_{eq} /cm²)

Sensor stitching

First stitched unit MOnolithic Stitched Sensor (MOSS) received this June:

- Wafer probing and systematic lab tests: verified all basic functionalities, ongoing full characterization to assess yield of different sensor sections
- First beam test @CERN PS in July: system fully functional, analysis in progress

ALICE 3

- Compact and lightweight all-silicon tracker
 - p_{τ} resolution better than 1% @1 GeV/c and ~1-2% over large acceptance
- Retractable vertex detector with excellent pointing resolution
 - About 3-4 μm @ 1 GeV/c
- Large acceptance: $-4 < \eta < 4$, $p_{\scriptscriptstyle T} > 0.02$ GeV/c
- $e/\pi/K/p$ particle identification over large acceptance
- Superconducting magnet system
- Continuous readout and online processing
 - Large data sample to access rare signals
- Muon Identification system, large-area ECal for photons and jets, Forward Conversion Tracker for ultrasoft photons

Letter of Intent: CERN-LHCC-2022-009

ALICE 3 - Vertex detector

- 3 layers of wafer-size, ultra-thin, curved, CMOS MAPS inside the beam pipe in secondary vacuum
- Retractable configuration thanks to movable petals: distance of 5 mm from beam axis for data taking and 16 mm at beam injection
- Unprecedent spatial resolution: $\sigma_{pos} \sim 2.5 \mu m$
- Extremely low material budget: 0.1% per layer
- Radiation tolerance requirements:
 300 Mrad + 10¹⁶ 1MeV n_{eq} /cm²

ITS3 prototype already achieved 10¹⁵ 1MeV n_{eq} /cm²

R&D challenges: radiation hardness, technology feature size, cooling

Bread-Board Model 3 (BBM3)

3D-printed aluminium petals 0.5mm wall thickness

ALICE 3 - Tracker

- 8 + 2 x 9 tracking layers (barrel + disks)
- 60 m² silicon pixel detector based on CMOS MAPS technology
- Compact: rout ~80 cm, zout ± 4 m
- Large coverage: $\pm 4 \eta$
- Time resolution: ~100 ns
- Sensor pixel pitch of ~50 μ m for σ_{POS} = 10 μ m
- Low power consumption: ~ 20 mW/cm²
- Very low material budget: ~1% X₀ per layer

R&D challenges: module integration, timing performance and material budget

ALICE 3 - Particle identification - TOF

Time of Flight detectors concept based on silicon timing sensors:

• Outer TOF at R≈85 cm

Separation up to 2 GeV/c

Total silicon area 45 m²

- Inner TOF at R≈19 cm
- Forward TOF at z≈ 405 cm

Separation power $\propto L/\sigma_{TOF}$

Distance and time resolution are crucial

Silicon timing sensors ($\sigma_{TOF} \approx 20 \text{ ps}$):

- R&D on LGADs and on CMOS with gain layer
- Test beam for new prototypes in October

ALICE 3 - Particle identification - RICH

Complement TOF PID with Cherenkov detector (RICH) with SiPMs

• Extends high p_T and η coverage of e^- and hadron ID

Continuous separation from 100 MeV/c to 10 GeV/c

Detectors concept (barrel + forward):

- Aerogel radiator
- R&D on monolithic silicon photon sensors

Beam test in October on first prototypes

Total SiPM area 40 m²

ITS3 - Physics goals - Dileptons

- Thermal dileptons, photons, vector mesons (thermal radiation, chiral symmetry restoration)
 - ► High precision measurement of temperature in mass region 1<Mee<2 GeV/c²

ALICE3 - Physics goals - Dileptons

- ALICE 3 high precision tracking results in an unprecedented HF rejection and low- p_T electron ID
 - → background suppression allows a very precise temperature measurement
- Differential analysis in $p_{T,ee}$: only accessible with ALICE 3

See more details Sebastian Scheid's poster

ALICE3 - Physics goals - Heavy flavours

- **Heavy flavour** hadrons at low p_T (charm and beauty interaction and hadronisation in the QGP)
- SHM: hierarchy with **n** number of charms $(g_c^n) \rightarrow$ multicharm hadrons (e.g. Ξ^{++}_{cc})
- Silicon layers inside the beam pipe allow for direct tracking of Ξ/Ω baryons (strangeness tracking)
 - -> full reconstruction of multi-charm baryon decay vertices

Summary

Very ambitious program of Upgrades on-going for ALICE:

- ITS3: Replacement of inner layers of ITS2 with novel silicon technology to reduce material budget and improve pointing resolution. R&D is progressing and showing excellent results
 - ► Technology ingredients established
 - TDR in preparation
- ALICE 3: innovative detector concept focusing on silicon technology (vertex detector, tracker, TOF detector and RICH)
 - R&D activities started on several strategic areas
 - New observables for low-mass dileptons and HF particles and much more
 - LOI was published on 2022 and Scoping document is foreseen for 2024
 - ALICE 3 pioneers several R&D directions that can have a broad impact on future HEP experiments (e.g. EIC, FCC-ee)

BACK-UP

ALICE 3 - Muon and photon identification

Muon chambers at central rapidity optimized for reconstruction of charmonia down to pT = 0 GeV/c

- ~70 cm non-magnetic steel hadron absorber
- Muon chambers with granularity $\Delta \eta \Delta \varphi = 0.02 \times 0.02$
- Muon chambers: scintillator bars equipped with wave-length shifting fibers (width 5 cm, gap 20 cm), readout SiPM
- Prototypes tested in beam test in July, analysis on-going

Large acceptance ECal (2π coverage) critical for measuring P-wave quarkonia and thermal radiation via real photons

- PbWO4-based high energy resolution segment
- Different hybrid photodetectors based on SiPM studied @PS and SPS: $\sigma_t < 200 \ ps$ (next TB @SPS 2024)

Forward Conversion Tracker

- Thin tracking disks to cover $3 < \eta < 5$: few ‰ of a radiation length per layer, position resolution < 10 µm
- **R&D programme** on: large area, thin disks, minimisation of material in front of FCT, operational conditions

Chiral symmetry restoration

Dileptons: one observable, multiple physics topics (not only precision measurement of temperature)

• ρ spectral shape (broadening or dropping mass) sensitive to in-plasma **chiral symmetry restoration** (sensitive to ρ-a1 mixing)

• Statistical and systematic uncertainties will allow to measure the ρ spectral function with unprecedented

precision

Colliding systems

Quantity	pp	0-0	Ar–Ar	Ca-Ca	Kr–Kr	In-In	Xe-Xe	Pb-Pb
$\sqrt{s_{\rm NN}}$ (TeV)	14.00	7.00	6.30	7.00	6.46	5.97	5.86	5.52
$L_{\rm AA}~({\rm cm}^{-2}{\rm s}^{-1})$	3.0×10^{32}	1.5×10^{30}	3.2×10^{29}	2.8×10^{29}	8.5×10^{28}	5.0×10^{28}	3.3×10^{28}	1.2×10^{28}
$\langle L_{\rm AA} \rangle \ ({\rm cm}^{-2} {\rm s}^{-1})$	3.0×10^{32}	9.5×10^{29}	2.0×10^{29}	1.9×10^{29}	5.0×10^{28}	2.3×10^{28}	1.6×10^{28}	3.3×10^{27}
\mathscr{L}_{AA}^{month} (nb^{-1})	5.1×10^5	1.6×10^3	3.4×10^2	3.1×10^2	8.4×10^{1}	3.9×10^{1}	2.6×10^{1}	5.6
\mathscr{L}_{NN}^{month} (pb ⁻¹)	505	409	550	500	510	512	434	242
$R_{\text{max}}(kHz)$	24 000	2169	821	734	344	260	187	93
μ	1.2	0.21	0.08	0.07	0.03	0.03	0.02	0.01
$dN_{ch}/d\eta$ (MB)	7	70	151	152	275	400	434	682
	at $R = 0.5$ cm							
$R_{\rm hit}~({ m MHz/cm^2})$	94	85	69	62	53	58	46	35
NIEL (1 MeV n _{eq} /cm ²)	1.8×10^{14}	1.0×10^{14}	8.6×10^{13}	7.9×10^{13}	6.0×10^{13}	3.3×10^{13}	4.1×10^{13}	1.9×10^{13}
TID (Rad)	5.8×10^6	3.2×10^6	2.8×10^6	2.5×10^6	1.9×10^6	1.1×10^6	1.3×10^6	6.1×10^{5}
	at $R = 100$ cm							
$R_{\rm hit} ({\rm kHz/cm^2})$	2.4	2.1	1.7	1.6	1.3	1.0	1.1	0.9
NIEL (1 MeV n_{eq}/cm^2)	4.9×10^9	2.5×10^9	2.1×10^{9}	2.0×10^{9}	1.5×10^9	8.3×10^8	1.0×10^9	4.7×10^{8}
TID (Rad)	1.4×10^2	8.0×10^{1}	6.9×10^{1}	6.3×10^{1}	4.8×10^{1}	2.7×10^{1}	3.3×10^{1}	1.5×10^{1}