

Generalized angularities measurements from STAR at $\sqrt{s}=200~\text{GeV}$

Tanmay Pani, for the STAR Collaboration

September 6, 2023

Outline

Introduction

2 Analysis

Results

2/25

Generalized angularities

 $\lambda_{eta}^{\kappa} = \sum_{\mathrm{const} \in \mathrm{iet}} \underbrace{\left(rac{p_{\mathrm{T,const}}}{p_{\mathrm{T,jet}}}
ight)^{\kappa}}_{ ext{solution}} imes \underbrace{r(\mathrm{const,jet})^{eta}}_{ ext{const,jet}}$

 $r(\text{const, jet}) = \sqrt{(\eta_{\text{jet}} - \eta_{\text{const}})^2 + (\phi_{\text{jet}} - \phi_{\text{const}})^2}$

 $\lambda^1_{\beta}
ightarrow {
m Infra-red}$ and collinear (IRC) safe angularities

Generalized angularities

$$\lambda_{\beta}^{\kappa} = \sum_{\text{const} \in \text{jet}} \underbrace{\left(\frac{p_{\text{T,const}}}{p_{\text{T,jet}}}\right)^{\kappa}}_{\text{const} \times \text{collinearity sensitive}} \times \underbrace{r(\text{const,jet})^{\beta}}_{\text{const,jet}}$$

$$\lambda_{eta}^1
ightarrow ext{Infra-red}$$
 and collinear (IRC) safe angularities

$$\begin{split} r(\mathrm{const}, \mathrm{jet}) &= \sqrt{(\eta_{\mathrm{jet}} - \eta_{\mathrm{const}})^2 + (\phi_{\mathrm{jet}} - \phi_{\mathrm{const}})^2} \\ \langle \mathsf{Radiation} \rangle_{\mathsf{gluon jets}} &> \langle \mathsf{Radiation} \rangle_{\mathsf{quark jets}} \\ &\Longrightarrow \langle \lambda_{\beta>0}^1 \rangle_{\mathsf{gluon jets}} &> \langle \lambda_{\beta>0}^1 \rangle_{\mathsf{quark jets}} \\ &\Longrightarrow \mathsf{quark-gluon discrimination} \end{split}$$

Generalized angularities

soft/hard radiation

$$\lambda_{\beta}^{\kappa} = \sum_{\text{const} \in \text{jet}} \left(\frac{p_{\text{T,const}}}{p_{\text{T,jet}}} \right)^{\kappa} \times r(\text{const,jet})^{\beta}$$

$$r(\text{const}, \text{jet}) = \sqrt{(\eta_{\text{jet}} - \eta_{\text{const}})^2 + (\phi_{\text{jet}} - \phi_{\text{const}})^2}$$

 $\langle \text{Radiation} \rangle_{\text{gluon jets}} > \langle \text{Radiation} \rangle_{\text{quark jets}}$

- $\implies \langle \lambda_{\beta>0}^1 \rangle_{\text{gluon jets}} > \langle \lambda_{\beta>0}^1 \rangle_{\text{quark jets}} \\ \implies \text{quark-gluon discrimination}$
 - Jet girth: $\mathbf{g} = \lambda_1^1 = \frac{\sum_{\mathrm{trk} \in \mathrm{jet}} p_{\mathrm{T,trk}} \Delta R}{p_{\mathrm{T,jet}}}$, measure of jet broadening
 - Momentum dispersion : $p_T^D = \frac{\sqrt{\sum_{\mathrm{trk} \in jet} \left(\rho_{T, \mathrm{trk}}\right)^2}}{\sum_{\mathrm{trk} \in jet} \rho_{T, \mathrm{trk}}}$ soft/hard fragmentation \implies low/high p_T^D
 - LeSub = $p_{
 m T,const}^{
 m Leading} p_{
 m T,const}^{
 m Subleading}$, proxy for hardest splitting in jet

 $\lambda_{\beta}^{1}
ightarrow ext{Infra-red}$ and collinear (IRC) safe angularities

high PT low g

Motivation

• Angularities are **IRC** safe (for $\kappa=1$), tunable in their sensitivity to different aspects of jet fragmentation, probe the modification of radiation pattern of jets in medium

Motivation

- Angularities are **IRC** safe (for $\kappa=1$), tunable in their sensitivity to different aspects of jet fragmentation, probe the modification of radiation pattern of jets in medium
- These measurements will help constrain theoretical descriptions of jet-medium interactions

Motivation

- Angularities are **IRC** safe (for $\kappa=1$), tunable in their sensitivity to different aspects of jet fragmentation, probe the modification of radiation pattern of jets in medium
- These measurements will help constrain theoretical descriptions of jet-medium interactions
- Generalized angularities measured at LHC, but lower energies at RHIC→ opportunity to further study medium effects using jets from phase space region complementary to LHC

Solenoidal Tracker At RHIC (STAR)

- The Time Projection Chamber (TPC) used to detect charged tracks
- The Barrel Electomagnetic Calorimeter (BEMC) measures energy deposited by electomagnetic constituents

Outline

Introduction

2 Analysis

Results

6/25

Dataset and Simulations

- System: Au+Au @ $\sqrt{s_{\rm NN}} = 200 \text{GeV} (2014)$
- High Tower (HT) triggered events (\exists tower with $E_{\rm tower} \geqslant 4$ GeV) to enhance jet signal
- Embedding simulation:
- GEN: PYTHIA-6 Perugia-STAR dijet events
 (J. K. Adkins, PhD thesis (Kentucky U., 2015))
- RECO: PYTHIA-6 Perugia-STAR
 + GEANT3 + STAR Au+Au
 Run14 MinBias

Jet Reconstruction

- Jets reconstructed by clustering **TPC tracks** and **calorimeter energy depositions** after **full hadronic correction** using the **anti-** k_T **algorithm** with a **resolution parameter** R = 0.4 and using the FASTJET library ¹
- Hard-core constituent cut of 2 GeV was applied on tracks and tower depositions for jet reconstruction i.e., p_{T,trk}(E_{T,tower}/c) ≥ 2 GeV/c
- Jet area > 0.4 to suppress fake jets
- $N_{con,charged} \ge 2$ for non-trivial values of observables
- These selections bias the jet sample to the hardest fragmented (quark-like) jets produced in an event

Uncovering the truth - MultiFold

- ullet Removing background and detector effects by mapping RECO o GEN using embedding simulation
- Simultaneously unfolding $p_{\mathrm{T,jet}}$, η_{jet} , ϕ_{jet} , $N_{con,charged}$, p_{T}^{D} , LeSub and Girth through Multifolding (Phys. Rev. Lett. 124, 182001)
- Multifolding uses Dense Neural Networks (DNNs) trained on full embedding sample at the detector level and the generator level
- DNNs were implemented using Energyflow package (JHEP 04 (2018) 013)

Closure test for 0-20% centrality

Multifolding implementation closes well for central and peripheral bins

+ 4 more observables for a net **7D unfolding**

10 / 25

Multifold vs RooUnfold

Multifold is shown to compare well with RooUnfold for p+p collisions at $\sqrt{s}=200$ GeV in previous jet-mass measurements

Y. Song (for the STAR Collaboration) arXiv:2307.07718

Outline

Introduction

2 Analysis

Results

Results - p_T^D

$$p_T^D = rac{\sqrt{\sum_{ ext{trk} \in ext{jet}} (p_{ ext{T,trk}})^2}}{\sum_{ ext{trk} \in ext{jet}} p_{ ext{T,trk}}}$$

 p_T^D consistent within systematic uncertainties between central, peripheral collisions

Results - p_T^D

$$ho_T^D = rac{\sqrt{\sum_{ ext{trk} \in ext{jet}} (
ho_{ ext{T,trk}})^2}}{\sum_{ ext{trk} \in ext{jet}}
ho_{ ext{T,trk}}}$$

- p_T^D consistent within systematic uncertainties between central, peripheral collisions
- p_T^D shows a kink at 0.7 due to strong dependence on number of constituents in jet

Results - LeSub

$$\mathsf{LeSub} = p_{\mathrm{T,const.}}^{\mathrm{lead}} - p_{\mathrm{T,const.}}^{\mathrm{sublead}}$$

 p_T^D, LeSub consistent within systematic uncertainties between central, peripheral collisions

Results - Girth

$$g = \frac{\sum_{\mathrm{trk} \in \mathrm{jet}} p_{\mathrm{T,trk}} \Delta R}{p_{\mathrm{T,jet}}}$$

 p_T^D, LeSub, Girth consistent within systematic uncertainties between central, peripheral collisions

Results - Girth

 p_T^D, LeSub, Girth consistent within systematic uncertainties between central, peripheral collisions

Further analysis ongoing to improve systematic uncertaities

• First fully corrected observations of p_T^D , Girth and LeSub from hard-core jets in heavy-ion collisions at RHIC presented

- First fully corrected observations of p_T^D , Girth and LeSub from hard-core jets in heavy-ion collisions at RHIC presented
 - Jets biased towards hardest fragmented / quark-like

- First fully corrected observations of p_T^D , Girth and LeSub from hard-core jets in heavy-ion collisions at RHIC presented
 - Jets biased towards hardest fragmented / quark-like
- First heavy-ion results using Multifold to remove detector effects and residual background fluctuations

17 / 25

- First fully corrected observations of p_T^D , Girth and LeSub from hard-core jets in heavy-ion collisions at RHIC presented
 - Jets biased towards hardest fragmented / quark-like
- First heavy-ion results using Multifold to remove detector effects and residual background fluctuations
- Central and Peripheral collisions are compared by taking ratios with systematic uncertainties assumed to be uncorrelated

- First fully corrected observations of p_T^D , Girth and LeSub from hard-core jets in heavy-ion collisions at RHIC presented
 - Jets biased towards hardest fragmented / quark-like
- First heavy-ion results using Multifold to remove detector effects and residual background fluctuations
- Central and Peripheral collisions are compared by taking ratios with systematic uncertainties assumed to be uncorrelated
 - Room to improve by studying systematic uncertainties in more detail

- First fully corrected observations of p_T^D , Girth and LeSub from hard-core jets in heavy-ion collisions at RHIC presented
 - Jets biased towards hardest fragmented / quark-like
- First heavy-ion results using Multifold to remove detector effects and residual background fluctuations
- Central and Peripheral collisions are compared by taking ratios with systematic uncertainties assumed to be uncorrelated
 - Room to improve by studying systematic uncertainties in more detail
- Further investigation with comparisions to MC simulations (e.g. JEWEL)

γ +jet and π^0 + jet measurements at STAR

How does the jet energy move around during propagation in medium?

Short paper arXiv: 2309.00156 [nucl-ex] Long paper arXiv: 2309.00145 [nucl-ex]

- Significant medium-induced recoil jet yield suppression for R = 0.2 compared to 0.5
- Evidence of significant medium-induced intra-jet broadening at angular scales less than 0.5 radians

BACK UP...

Closure 0-20%

Closure 40-80%

Comparision with ALICE

Comparision with ALICE

