Jet production and the nuclear modification factor in pp and p-Pb collisions with ALICE

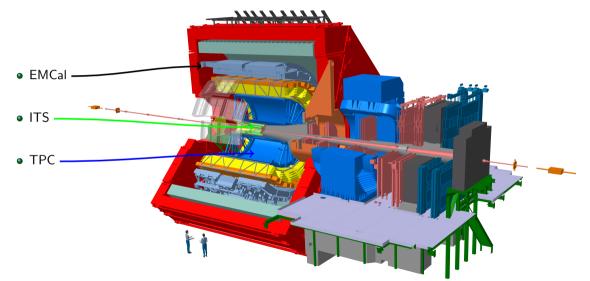
Austin Schmier on behalf of the ALICE collaboration
University of Tennessee Knoxville

September 6, 2023

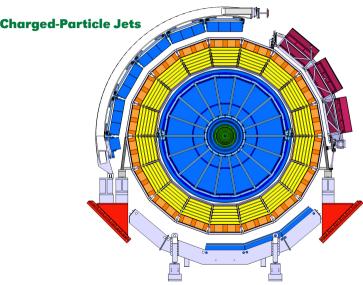
in:266438 mestamp:2016-11-26 17:58:2

Timestamp:2016

Overview


- Precision measurements of jet production in small systems at
 - 2017 pp 5.02 TeV
 - 2016 p-Pb 5.02 TeV
 - 2012 pp 8 TeV
 - 2016 p-Pb 8.16 TeV
- Detailed comparison to MC models/QCD calculations
- * New Publication
- * New Measurement

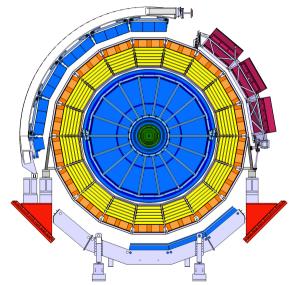
Instrumentation



Jet Reconstruction

ITS+TPC ←

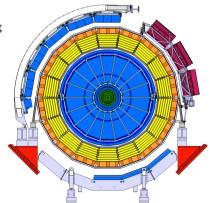
- ullet Full ϕ acceptance test
- $|\eta| < 0.9$
- $p_{\text{T,track}} > 150 \text{ MeV}$
- EMCal
 - Run 1/2: $\Delta \phi = 100^{\circ}/107^{\circ}$
 - $|\eta| < 0.7$
 - Provides a trigger for high momentum jet events
 - $E_{\text{cluster}} > 300 \text{ MeV}$
- Reconstructed using the anti-k_T algorithm
- Can use different jet radii: $R = \sqrt{\eta^2 + \phi^2}$


Jet Reconstruction

- ITS+TPC ←
 - ullet Full ϕ acceptance test
 - $|\eta| < 0.9$
 - $p_{\rm T,track} > 150~{
 m MeV}$
- EMCal ←

Full Jets

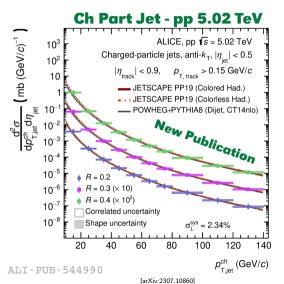
- Run 1/2: $\Delta \phi = 100^{\circ}/107^{\circ}$
- $|\eta| < 0.7$
- Provides a trigger for high momentum jet events
- $E_{\text{cluster}} > 300 \text{ MeV}$
- Reconstructed using the anti-k_τ algorithm
- Can use different jet radii: $R = \sqrt{\eta^2 + \phi^2}$



Jet Reconstruction

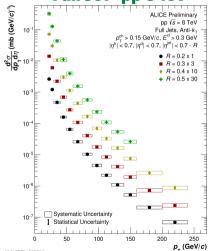
- ITS+TPC
 - ullet Full ϕ acceptance test
 - $|\eta| < 0.9$
 - $p_{\text{T.track}} > 150 \text{ MeV}$
- EMCal
 - Run 1/2: $\Delta \phi = 100^{\circ}/107^{\circ}$
 - $|\eta| < 0.7$
 - Provides a trigger for high momentum jet events
 - $E_{\text{cluster}} > 300 \text{ MeV}$
- Reconstructed using the anti-k_™ algorithm
- Can use different jet radii: $R = \sqrt{\eta^2 + \phi^2}$

- Distributions fully corrected
 - Unfolded via bayesian unfolding
- Dominant uncertainties
 - Tracking efficiency
 - Correlated unfolding uncertainties



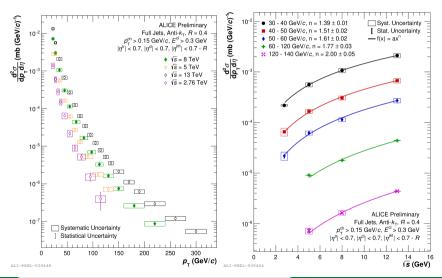
Inclusive Jet Cross-Sections: Charged-Particle Jets

- Possible to go to large jet radii
- High precision of tracking detectors
- Small uncertainties allow for tighter model constraints
- Momentum limited by ALICE high-p_Ttracking



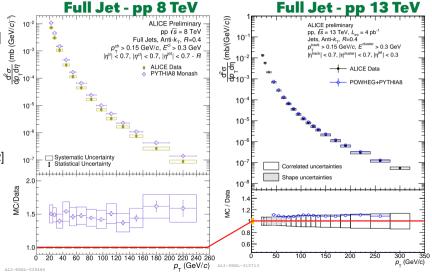
Inclusive Jet Cross-Sections: Full Jets

Full Jet - pp 8 TeV


- Closer to the theoretical definition of a jet
 - Less sensitive to fragmentation and other non-perturbative effects
- ullet Can go to high $p_{\scriptscriptstyle T}$ using EMCal triggers
- Jet required to be fully contained in EMCal

Collision Energy Dependence in pp Collisions

- Spectra get harder with increased collision energy
- Follow a power law dependence: $(\sqrt{s})^n$
- Different power law for different momenta


Comparison with MC Generators

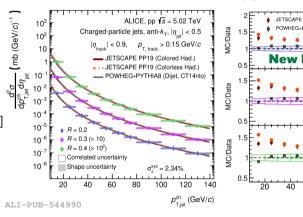
PYTHIA [arXiv:1907.09874]
 alone over-predicts
 data

 $by \approx 50\%$

- Similar behavior seen at other collision energies
- Predictions including POWHEG [arXiv:0709.2092] agree with data within uncertainties
- ightarrow Needs NLO correction

Comparison with MC Generators

 $p_{\text{T iet}}^{\text{ch}} \left(\text{GeV}/c \right)$


PYTHIA [arXiv:1907.09874] alone over-predicts data

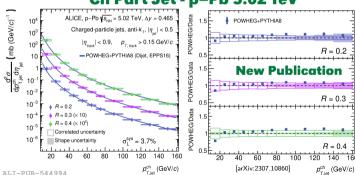
 $by \approx 50\%$

- Similar behavior seen at other collision energies
- Predictions including POWHEG [arXiv:0709.2092] agree with data within uncertainties
- ightarrow Needs NLO correction

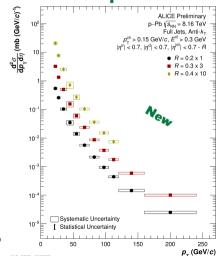
JETSCAPE [arXiv:1903.07706]

Ch Part Jet - pp 5.02 TeV

[arXiv:2307.10860]



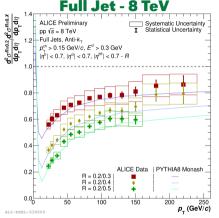
More Complex Systems: p-Pb

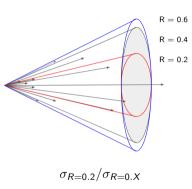


- Compare with pp to explore behavior
- How do different inital states effect the final state?
- Reference for Pb-Pb collisions

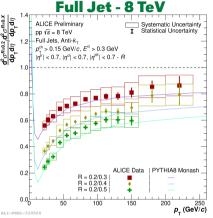
Ch Part Jet - p-Pb 5.02 TeV

Full Jet - p-Pb 8.16 TeV

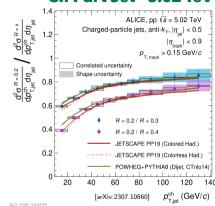



September 6, 2023

- Ratios allow for error cancellation
- Sensitive to fragmentation & hadronization
- Reproduced by MC models ([arXiv:1101.2665])
- Fragmentation patterns constant across collision energies


- Jets become more collimated with increasing momentum
- p-Pb consistent with pp within uncertainties

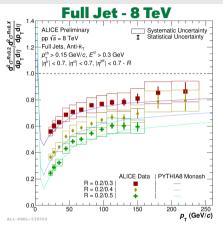
- * Christos Pliatskas' Poster Energy Flow
- * Wenging Fan's Talk EE Correlators
 - Jaehveok Rvu's Poster Jet Fragment i_{τ}

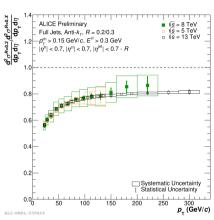


T

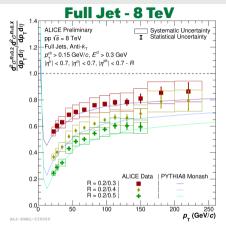
- Ratios allow for error cancellation
- Sensitive to fragmentation & hadronization
- Reproduced by MC models ([arXiv:1101.2665])
- Fragmentation patterns constant across collision energies

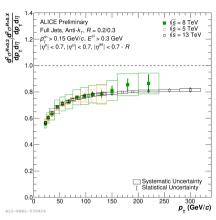
Ch Part Jet - 5.02 TeV


- Jets become more collimated with increasing momentum
- p-Pb consistent with pp within uncertainties


- * Christos Pliatskas' Poster Energy Flow
- * Wenging Fan's Talk EE Correlators
 - Jaehveok Ryu's Poster Jet Fragment i_{τ}

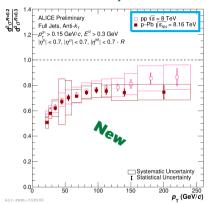
- Ratios allow for error cancellation
- Sensitive to fragmentation & hadronization
- Reproduced by MC models ([arXiv:1101.2665])
- Fragmentation patterns constant across collision energies


- Jets become more collimated with increasing momentur
- p-Pb consistent with pp within uncertainties

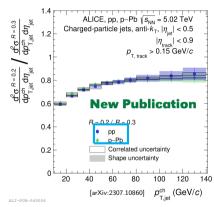

- * Christos Pliatskas' Poster Energy Flow
- * Wenging Fan's Talk EE Correlators
 - Jaehveok Rvu's Poster Jet Fragment i_{τ}

- Ratios allow for error cancellation
- Sensitive to fragmentation & hadronization
- Reproduced by MC models ([arXiv:1101.2665])
- Fragmentation patterns constant across collision energies

- Jets become more collimated with increasing momentum
- p-Pb consistent with pp within uncertainties


- * Christos Pliatskas' Poster Energy Flow
- * Wenging Fan's Talk EE Correlators
 - Jaehveok Rvu's Poster Jet Fragment i_{τ}

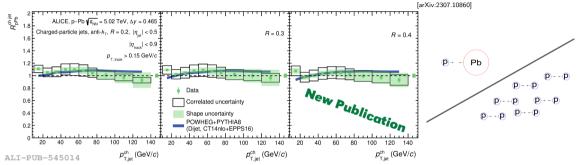
T


Full Jet - 8, 8.16 TeV

- Ratios allow for error cancellation
- Sensitive to fragmentation & hadronization
- Reproduced by MC models ([arXiv:1101.2665])
- Fragmentation patterns constant across collision energies

- Jets become more collimated with increasing momentum
- p-Pb consistent with pp within uncertainties

Ch Part Jet - 5.02 TeV


- * Christos Pliatskas' Poster Energy Flow
- * Wenging Fan's Talk EE Correlators
 - Jaehveok Rvu's Poster Jet Fragment i_{τ}

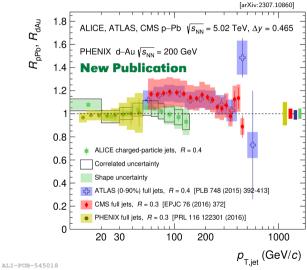
Nuclear Modification Factor

Ch Part Jet - 5.02 TeV

$$R_{\mathsf{p-Pb}} = \sigma_{\mathsf{p-Pb}}/(\sigma_{\mathsf{pp}} * 208)$$

- Can we separate cold nuclear matter effects from those of a strongly interacting medium?
- Look for inital state effects.
- This measurement: Consistent with unity

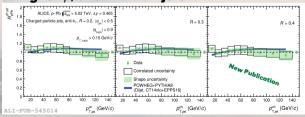
- * Don Jo Kim's Poster High Mult pp
- * Nadine Grünwald's Talk Pb–Pb


Nuclear Modification Factor

September 6, 2023

Ch Part Jet - 5.02 TeV

- Consistent with unity
- Consistent with PHENIX and CMS within uncertainties
- Consistent with ATLAS within about 1σ



A. Schmier (UTK) Quark Matter 2023

- Inclusive jet cross-section measurements can help us understand jet formation as a whole and provide comparisons to theory
- ALICE measurements with charged-particle jets and full jets have different strengths and are complimentary to each other
- LO (Pythia, etc) shows good agreement with cross-section ratios, but NLO (POWHEG, etc) is required to give a good description of the cross-sections
- Nuclear modification factor is consistent with unity and shows general agreement with other experiments
- Does the same hold at higher-p_τ and with full jets?

Backup: JETSCAPE

- PYTHIA8 used to generate the initial hard scattering and the underlying event
- Intermediate shower is handled by MATTER (includes parton virtuality)
- QCD strings are formed through colored or colorless hadronization
- Strings are fed into PYTHIA8 for string fragmentation
- JETSCAPE configuration: PP19 tune, implemented in JETSCAPE V3.4.1