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• The kinematic coverage of world data constraining nuclear 
Parton Distribution Functions (nPDFs) has expanded 
massively with contributions from the LHC.

• Gaps still remain in the data determining nPDFs, leaving 
large stretches of phase space un-constrained.
• We must currently rely on interpolation and miss the 

finer details of their evolution.

• The EIC will provide more coverage, but it is years away.
• It still will not extend as high in 𝑄2 as measurements 

from the LHC.
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What about the initial 
state of the probe?

Figure inspired by arXiv:2112.12462
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• Strong evidence supports the claim there is no jet 
quenching p+Pb collisions.
• New constraints from ATLAS, arXiv:2206.01138

• Variation with centrality is an initial, not final state 
effect!

https://arxiv.org/abs/2206.01138


Introduction: Centrality-Dependence in p+Pb

6Quark Matter 2023, September 3-9, Houston, TX9/6/2023

• Strong evidence supports the claim there is no jet 
quenching p+Pb collisions.
• New constraints from ATLAS, arXiv:2206.01138

• Variation with centrality is an initial, not final state 
effect!

Sketch from Alvioli et al., arXiv:1709.04993

This effect has been quite 
successfully described 
through a framework of 
color fluctuations.

Proton probes containing 
a high-𝑥 parton have 
smaller than average size 
(color transparency).
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quenching p+Pb collisions.
• New constraints from ATLAS, arXiv:2206.01138

• Variation with centrality is an initial, not final state 
effect!

Sketch from Alvioli et al., arXiv:1709.04993

This effect has been quite 
successfully described 
through a framework of 
color fluctuations.

Proton probes containing 
a high-𝑥 parton have 
smaller than average size 
(color transparency).

Color transparency makes specific predictions 
about dependence on 𝑥𝑝, not 𝑥𝑃𝑏. Dijets can 

probe this effect in unprecedented detail!

https://arxiv.org/abs/2206.01138
https://arxiv.org/abs/1709.04993
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pIn ultra-relativistic heavy ion 
collisions, the intense 
electromagnetic fields provide 
a flux of quasi-real photons.
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pIn ultra-relativistic heavy ion 
collisions, the intense 
electromagnetic fields provide 
a flux of quasi-real photons.

In p+Pb collisions, a partonic 
constituent from the proton 
strikes the Pb nucleus.

In both cases, they scatter 
from a parton in the Pb target, 
probing its nPDF.
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pIn ultra-relativistic heavy ion 
collisions, the intense 
electromagnetic fields provide 
a flux of quasi-real photons.

In p+Pb collisions, a partonic 
constituent from the proton 
strikes the Pb nucleus.

In resolved processes, the 
photon can fluctuate to some 
hadronic state.

The probe in p+Pb collisions 
always has a more complex 
hadronic structure.
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We can select photo-nuclear jet events with cuts 
motivated by the particular event topology.
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We can select photo-nuclear jet events with cuts 
motivated by the particular event topology.

𝐻𝑇 = 

𝑖

𝑝𝑇
𝑖

𝑥𝐴 =
𝑀𝑗𝑒𝑡𝑠𝑒−𝑦𝑗𝑒𝑡𝑠

𝑠𝑁𝑁

𝑧𝛾 =
𝑀𝑗𝑒𝑡𝑠𝑒+𝑦𝑗𝑒𝑡𝑠

𝑠𝑁𝑁

ATLAS-CONF-2022-021



UPC Dijets: Scanning in Photon Energy
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The 𝑥𝐴 distribution has substantial acceptance 
effects in 𝑧𝛾.

Selecting on photon energy removes this bias, 
allowing a more direct measurement of nPDFs.
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UPC Dijet Cross-Sections
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Photon Energy
0.004 < 𝑧𝛾 < 0.008

• At intermediate photon energies, we can access higher-x partons.
• Systematic uncertainties grow near the acceptance edge at high-x.
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Photon Energy
0.008 < 𝑧𝛾 < 0.015

• Higher photon energy opens up the low-x shadowing region.
• Results are quite consistent with the theoretical model.

Quark Matter 2023, September 3-9, Houston, TXATLAS-CONF-2022-021



UPC Dijet Cross-Sections
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Photon Energy
0.015 < 𝑧𝛾 < 0.027

• The highest photon energy allows the most access to low 𝑥.
• Systematic control is more challenging near acceptance edges.
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More details available 
in poster by R. Longo
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The expected log-linear decrease with 𝑥𝑝 from 

color transparency is observed in the valence 
region.

The very strong suppression at the highest values 
of 𝑥𝑝 is also consistent with this expectation.

More details available 
in poster by R. Longo
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The expected log-linear decrease with 𝑥𝑝 from 

color transparency is observed in the valence 
region.

The very strong suppression at the highest values 
of 𝑥𝑝 is also consistent with this expectation.

The log-linear trend appears to break down in the 
low-𝑥𝑝 region
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More details available 
in poster by R. Longo
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The trend with 𝑅𝐶𝑃 is much less 
consistent in 𝑥𝑃𝑏 than in 𝑥𝑝 .

arXiv:2309.00033

More details available 
in poster by R. Longo

Suppression depends on 𝑦𝑏 and 
𝑝𝑇,𝐴𝑣𝑔 without a clear trend in 𝑥𝑃𝑏. 
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• Photo-nuclear jet production was measured by ATLAS in 
5.02 TeV Pb+Pb collisions with 2018 data.
• Particle-Flow jets allow for the measurement to be 

extended even lower in jet 𝑝𝑇 while maintaining 
systematic control.

•  This data can add a wide range of kinematic coverage 
to existing nPDF constraints.
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of the approximate partonic system.
• The resulting trend in 𝑅𝐶𝑃 suggests that            

these results are consistent with color      
transparency.
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• Photo-nuclear jet production was measured by ATLAS in 
5.02 TeV Pb+Pb collisions with 2018 data.
• Particle-Flow jets allow for the measurement to be 

extended even lower in jet 𝑝𝑇 while maintaining 
systematic control.

•  This data can add a wide range of kinematic coverage 
to existing nPDF constraints.

• The centrality dependence of dijet yields in 8.16 TeV p+Pb 
collisions was measured by ATLAS.
• Triple-differential dijet yields allow for detailed studies 

of the approximate partonic system.
• The resulting trend in 𝑅𝐶𝑃 suggests that            

these results are consistent with color      
transparency.

These results are closely related 
to the early physics goals of the 

EIC!
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Selecting Photo-nuclear Jet Events
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Event Selections
• 0nXn requirement for nuclear breakup in exactly one ATLAS 

Zero-Degree Calorimeter (ZDC)
• Large rapidity gaps on one side of the detector

• To veto 𝛾𝛾 → 𝑞 ത𝑞,  also require ∆η𝐴
𝑒𝑑𝑔𝑒

< 3.
• At least two Particle-Flow jets with 𝑝𝑇 > 15 GeV.

𝐻𝑇 = 

𝑖

𝑝𝑇
𝑖

𝑥𝐴 =
𝑀𝑗𝑒𝑡𝑠𝑒−𝑦𝑗𝑒𝑡𝑠

𝑠𝑁𝑁

𝑧𝛾 =
𝑀𝑗𝑒𝑡𝑠𝑒+𝑦𝑗𝑒𝑡𝑠

𝑠𝑁𝑁

Selecting at least two 
jets allows access to 
the hard-scattering 
kinematics.
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• The photon flux available through Pythia makes certain overly-simplified assumptions which we correct 
via modeling with STARlight.

We integrate over A-A impact parameter 
(b) and the impact parameter relative to 
the photon-emitting nucleus (𝑠𝐴).

Correction for the probability 
of breakup due to additional 
EM interactions Nuclear thickness function

Correction for the probability 
of breakup due to hadronic 
interactions (overlap veto)

The photon flux from Pythia uses a 
point source, so this term corrects 
for coherent nuclear emission.
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The photo-nuclear jet requirements select events with very high-
energy photons.

• 𝐸𝛾 ∝ 1/𝑏 → Biases towards lower impact parameter collisions

• Much higher probability of breakup due to additional EM 
interactions

Studies of dijet events with 
large gaps on one side estimate 
about 50% of photo-nuclear jet 
production breaks up!

Basic theoretical modeling 
predicts an even higher rate.

This theoretical model for breakup is used to compare 
theory to data.
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𝐻𝑇 = 

𝑖

𝑝𝑇
𝑖

𝑥𝐴 =
𝑀𝑗𝑒𝑡𝑠𝑒−𝑦𝑗𝑒𝑡𝑠

𝑠𝑁𝑁
𝑧𝛾 =

𝑀𝑗𝑒𝑡𝑠𝑒+𝑦𝑗𝑒𝑡𝑠

𝑠𝑁𝑁

𝑑3𝜎

𝑑𝐻𝑇𝑑𝑥𝐴𝑑𝑧𝛾
=

1

ℒ

∆𝑌

∆𝐻𝑇∆𝑥𝐴∆𝑧𝛾
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Cross-sections are measured 
and unfolded in 𝐻𝑇, 𝑥𝐴, and 𝑧𝛾.

Results are corrected using a 
theoretical model for the EM 
dissociation probability.

ATLAS-CONF-2022-021
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𝑖
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ℒ
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Acceptance in 𝑥𝐴 is strongly dependent 
on the photon energy, 𝑧𝛾.𝐻𝑇  does not depend strongly on 𝑥𝐴 or 𝑧𝛾.

ATLAS-CONF-2022-021

Cross-sections are measured 
and unfolded in 𝐻𝑇, 𝑥𝐴, and 𝑧𝛾.

Results are corrected using a 
theoretical model for the EM 
dissociation probability.
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• The distribution of 𝑧𝛾 values for large 𝑥𝐴 in bins of 𝐻𝑇  (right) 

demonstrates the measured photon flux.
• The breakup model performs well within systematic 

uncertainties.
• Disagreements appear to arise at low 𝑧𝛾, where the 

breakup model tends to over-correct.
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For the first time, ATLAS has 
observed dijet production in UPCs 
without nuclear breakup (0n0n).

Gaps are required on both sides of 
the detector: σ ∆η > 2.0

A factor of 10 more events are 
observed in data than are predicted 
from 𝛾𝛾 → jets, estimated by Pythia or 
comparison to 𝛾𝛾 → 𝜇+𝜇− studies. 
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without nuclear breakup (0n0n).
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the detector: σ ∆η > 2.0

A factor of 10 more events are 
observed in data than are predicted 
from 𝛾𝛾 → jets, estimated by Pythia or 
comparison to 𝛾𝛾 → 𝜇+𝜇− studies. 

The distribution shapes are clearly different from pure 𝛾𝛾 → jets.
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𝐻𝑇 = 

𝑖

𝑝𝑇
𝑖

𝑥𝐴 =
𝑀𝑗𝑒𝑡𝑠𝑒−𝑦𝑗𝑒𝑡𝑠

𝑠𝑁𝑁
𝑧𝛾 =

𝑀𝑗𝑒𝑡𝑠𝑒+𝑦𝑗𝑒𝑡𝑠

𝑠𝑁𝑁

Unfolded / Measured

The measured cross-sections are then unfolded in 3 dimensions to 
correct for detector effects.

• Low-𝑝𝑇 flavor effects are the largest correction.
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Systematic Uncertainties
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Systematic uncertainties 
are the key limiting factor 
in our sensitivity to 
nuclear PDFs.

The jet energy scale and 
resolution uncertainties 
are typically 5-10%.

Control over the preliminary 
low-μ calibration currently 
provides the dominant 
source of uncertainty.

Systematic uncertainties are 
also evaluated on the 
unfolding and event 
selections.
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Photon Energy
0.004 < 𝑧𝛾 < 0.008

• At intermediate photon energies, we can access higher-x partons.
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Photon Energy
0.008 < 𝑧𝛾 < 0.015

• Higher photon energy opens up the low-x shadowing region.
• Results are quite consistent with the theoretical model.
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Measured Cross-Sections
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Photon Energy
0.015 < 𝑧𝛾 < 0.027

• The highest photon energy allows the most access to low 𝑥.
• Systematic control is more challenging near acceptance edges.

Quark Matter 2023, September 3-9, Houston, TX9/6/2023
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MC techniques to characterize the 
relationship between event geometry 
and mean number of participants
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