Quark Matter 2023

Contribution ID: 365

Type: Oral

Measurements of p- Λ and d- Λ correlations in Au+Au collisions from the fixed-target program at the STAR experiment

Wednesday, 6 September 2023 16:50 (20 minutes)

Heavy-ion collisions offer a new way to understand nucleon-hyperon (N-Y) interactions. The two-particle correlation, which reveals valuable information about the space-time evolution of the particle-emitting source and final state interactions involving hyperons, is the primary observable of interest. The measurements of p- Λ and d- Λ correlations can shed light on the N-Y two body and the N-N-Y three body interactions, which are important to understand the inner structure and equation of state of neutron stars. Further, the measurement of d- Λ correlations provides insight into the internal structure and binding energy of light hypernuclei.

In this talk, we present the precise measurement of p- Λ correlation using high statics data and the first measurement of d- Λ correlation with $\sqrt{s_{\rm NN}} = 3$ GeV Au+Au collisions from the fixed-target program at the STAR experiment. The correlation functions are analyzed within the Lednicky-Lyuboshitz formalism in order to characterize the emission source size, the scattering length, and the effective range of p- Λ and d- Λ interactions. The extracted parameters will be compared to those from other baryon correlations (p-p, d-d, Λ - Λ) and various effective theory model calculations. Finally, physics implications on final state interactions involving hyperons and the hypertriton inner structure will be discussed.

Category

Experiment

Collaboration (if applicable)

STAR Collaboration

Primary author: HU, Yu

Presenter: HU, Yu

Session Classification: QCD at finite T and density

Track Classification: QCD at finite density and temperature