

SEPTEMBER 3-9, 2023 | HOUSTON, TEXAS uark Vlatter 2023 The 30th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

Latest ALICE results on charm and beauty hadronization mechanisms in hadronic collisions

Jianhui Zhu (INFN Padova) on behalf of the ALICE Collaboration

Istituto Nazionale di Fisica Nucleare Sezione di Padova

Heavy-flavour hadronization

Vacuum

- Open heavy-flavour (HF) hadron production cross section calculated using the factorization approach
 - Ratios of particle species sensitive to hadronization

- Hard scattering $e^+e^- \rightarrow q\bar{q}$
- Color-potential string between q and \bar{q}
- Hadronisation via multiple string breaking and formation of quark-antiquark pairs

C. Bierlich, et al., *Eur.Phys.J.C* 82 (2022) 228

Open questions

- Fragmentation fractions (FFs) universality violated already in pp collisions?
 - A system rich of quarks or gluons?
- Charm-strange baryons ($\Xi_c^{0,+}$ and Ω_c^0) production can not be described by models, which can describe Λ_c^+
 - Powerful constraints on models

Dense, extended-size system

<u>Coalescence</u>

- Heavy-quarks coalescence with light (di-)quarks from the system
- Expected to increase baryon production at low and intermediate $p_{\rm T}$

ALICE detector for Run 1 and Run 2

- Inner Tracking System (ITS)
 - $|\eta| < 0.9$
 - Tracking, vertexing, multiplicity
- **V0**
 - V0-A: 2.8 < η < 5.1</p>
 - V0-C: -3.7 < η < -1.7</p>
 - Triggering, luminosity, multiplicity
- **Time Projection Chamber (TPC)**
 - ► | **η** | < 0.9
 - Tracking, PID
- **Time-Of-Flight (TOF)**
 - $\bullet |\eta| < 0.9$
 - Tracking, PID

	System	Year(s)	√s _{NN}	Lint
	рр	2017	5.02 TeV	~20 nb ⁻¹
		2016 – 2018	13 TeV	~32 nb⁻¹
	p–Pb	2016	5.02 TeV	~287 µb⁻
	Pb–Pb (0-10%)	2018	5.02 TeV	~131 µb⁻
	Pb–Pb (30-50%)	2018	5.02 TeV	~56 µb⁻¹
THE ALICE DETECTOR		<image/>	<image/>	a. ITS SPD (Pix b. ITS SDD (Dr c. ITS SSD (St d. V0 and T0 e. FMD
18. ZDC 19. ACORDE			'	X

Charm-hadron reconstruction

Hadronic decays

•
$$D^0(\bar{u}c) \rightarrow K^-\pi^+, BR \approx 3.95\%$$

• $D^+(\bar{d}c) \rightarrow K^-\pi^+\pi^+, BR \approx 9.38\%$

•
$$D^{*+}(\bar{d}c) \rightarrow D^0\pi^+$$
, BR $\approx 67.7\%$

- $D_s^+(\bar{s}c) \rightarrow \phi \pi^+ \rightarrow K^+K^-\pi^+, BR \approx 2.22\%$
- ► $D_{s1}^+(\bar{s}c) \rightarrow D^{*+}K_s^0$, BR unknown
- ► $D_{s2}^{*+}(\bar{s}c) \rightarrow D^+K_s^0$, BR unknown
- $\Lambda_c^+(udc) \rightarrow pK^-\pi^+, BR \approx 6.28\%$
- $\Lambda_c^+(udc) \rightarrow pK_s^0$, BR $\approx 1.59\%$
- $\Sigma_c^0(ddc) \rightarrow \Lambda_c^+ \pi^-, BR \approx 100\%$
- $\Sigma_c^{++}(uuc) \rightarrow \Lambda_c^+ \pi^+, BR \approx 100\%$
- $\bullet \quad \Xi_{\rm c}^+({\rm usc}) \rightarrow \Xi^- \pi^+ \pi^+, \ {\rm BR} \approx 2.9 \ \%$
- $\Xi_{\rm c}^0({\rm dsc}) \rightarrow \Xi^- \pi^+, \ {\rm BR} \approx 1.43 \ \%$
- $\Omega_c^0(ssc) \rightarrow \Omega^- \pi^+$, BR unknown

<u>Semileptonic decays</u>

- $\Lambda_{\rm c}^+({\rm udc}) \rightarrow \Lambda {\rm e}^+ \nu_{\rm e}, \ {\rm BR} \approx 3.6 \%$
- $\Xi_{\rm c}^0({\rm dsc}) \rightarrow \Xi^- {\rm e}^+ \nu_{\rm e}, \, {\rm BR} \approx 1.04 \,\%$
- $\Omega_c^0(ssc) \rightarrow \Omega^- e^+ \nu_e$, BR unknown

Charge conjugates are included

Prompt

 $c \rightarrow charm hadrons (D^0, \Lambda_c^+, ...)$ • $b \rightarrow c \rightarrow charm hadrons (D^0, \Lambda_c^+, ...)$

Non-Prompt

First observation of $\Xi_c^0(dsc)$ **in Pb–Pb collisions**

D-meson production in pp collisions

 $f(c \rightarrow H_c)$: Eur.Phys.J.C 75 (2015) 19

- No strong $p_{\rm T}$ dependence in prompt and non-prompt charm meson-to-meson yield ratios
- Well described by model calculations, based on factorization assuming FFs from e^+e^- collisions

Charm-baryon production: $\Lambda_c^+(udc)$ in pp collisions

- Monash based on FFs from e^+e^- collisions

Jianhui Zhu | charm and beauty hadronization mechanisms

Ω

Charm-baryon production: $\Lambda_c^+(udc)$ in p–Pb collisions

Prompt Λ_c^+/D^0 in p–Pb collisions

- First measurement down to $p_{\rm T} = 0$
- Shift of peak towards higher $p_{\rm T}$ could be due to quark recombination or collective effects (e.g. radial flow)
- Well described by quark (re)combination model (QCM)

Non-prompt Λ_c^+/D^0 in p–Pb collisions

- First measurement of non-prompt Λ_c^+/D^0
- Similarity between prompt and non-prompt Λ_{c}^{+}/D^{0} within uncertainties

Charm-baryon production: $\Xi_c^0(dsc)$ and $\Xi_c^+(usc)$

Charm baryon-to-meson yield ratio Ξ_c^0/D^0

- Hint of enhancement at high p_T in p–Pb w.r.t. pp collisions
- **Described** by QCM **Underestimated** by QCM for both pp and p–Pb collisions

Nuclear modification factor $R_{\rm pPb}$

• $R_{\rm pPb}$ of $\Lambda_{\rm c}^+$ and $\Xi_{\rm c}^0$ are compatible within uncertainties

Charm-baryon production: $\Omega_c^0(ssc)$ in pp collisions (I)

- No measurement of BR($\Omega_c^0 \rightarrow \Omega^- \pi^+$), loose bound from theoretical calculations
- Only Catania (coalescence + resonance decay) close to the data

Extremely important to measure BR to discriminate models

Charm-baryon production: $\Omega_c^0(ssc)$ in pp collisions (II)

First measurement of branching-fraction ratio of $BR(\Omega_c^0 \to \Omega^- e^+ \nu_e)/BR(\Omega_c^0 \to \Omega^- \pi^+)$ in ALICE

- Compatible with more precise measurement in Belle within 2.7 σ , and with theoretical calculations
- Run 3 data taking will allow to reduce statistical and systematical uncertainties

Jianhui Zhu | charm and beauty hadronization mechanisms

4 HF poster:

Charm-baryon production vs. event multiplicity

- difference between collision systems is due to momentum redistribution

D⁺ resonance production vs. event multiplicity

First measurement of D_s^+ -resonance production in pp collisions

- No multiplicity dependence on D_{s1}^+/D_s^+ ratio

Possible hint of decreasing trend as a function of multiplicity on D_{s2}^{*+}/D_s^+ ratio \rightarrow Need more precise measurement

Charm production in pp and p–Pb collisions

- $\sigma(c\bar{c})$ at midrapidity at the upper bound of state-of-the-art pQCD calculations
- No significant difference in the overall production of charm between pp and p-Pb collisions

Charm fragmentation fractions in pp and p–Pb collisions

ALI-PUB-546222

- Independent of centre-of-mass energy: pp@5.02 TeV and pp@13 TeV
- Consistent with system size: pp and p–Pb collisions
- Significant enhancement for charm baryons in pp and p–Pb w.r.t. e⁺e⁻ and e⁻p collisions

Fragmentation fractions universality is challenged

Outlook: Run 3 data

More precise measurements of charm-baryon production with Run 3 data

Summary

- Investigate heavy-flavour (HF) hadronization mechanisms with Run 2 data
 - Assumption of universal parton-to-hadron fragmentation fractions not valid at LHC energies
 - IF hadronization mechanisms in small collision systems at LHC need further investigations Resonance decay? Coalescence? Radial flow?
 - Access to exclusive measurement of beauty
 - The measurement of Ξ_c^0 production in Pb–Pb collisions with Run 2 data is coming soon

Jianhui Zhu | charm and beauty hadronization mechanisms

Backup

