

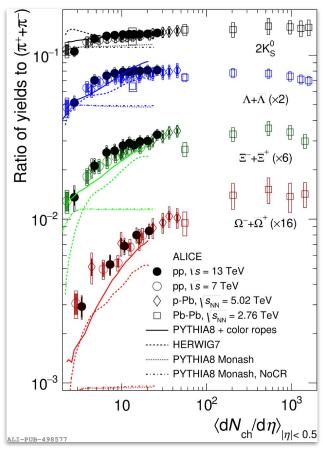
Insights on strange quark hadronization in small collision systems with ALICE: multiple strange hadrons and Σ^{\pm} baryons

Sara Pucillo^{1,2} on behalf of the ALICE Collaboration

QM 2023 - Houston 03-09 Sept.

Strangeness Enhancement (SE):

- S/π increases as a function of multiplicity identically across different energies and collision systems.
- Enhancement proportional to the strangeness content in the hadron



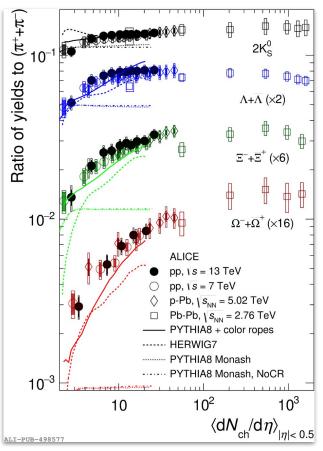
ALICE Coll., Eur. Phys. J. C 80 (1616) 693

Strangeness Enhancement (SE):

- S/π increases as a function of multiplicity identically across different energies and collision systems.
- Enhancement proportional to the strangeness content in the hadron

New in this talk:

- $(anti)\Sigma^{\pm}$ baryons \rightarrow same strangeness content as Λ
- Probability Density Function (PDF) for K_S^0 , Λ , Ξ , Ω
 - extend beyond the average of the distribution
 - unique opportunity to test the connection between charged and strange particle multiplicity production



ALICE Coll., Eur. Phys. J. C 80 (1616) 693

Strangeness Enhancement (SE):

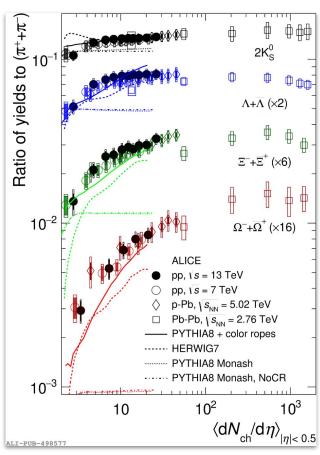
- S/π increases as a function of multiplicity identically across different energies and collision systems.
- Enhancement proportional to the strangeness content in the hadron

New in this talk:

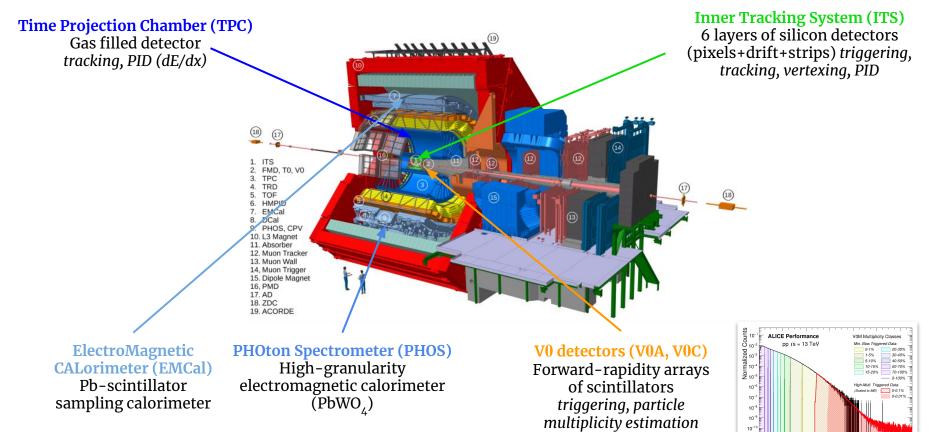
- $(anti)\Sigma^{\pm}$ baryons \rightarrow same strangeness content as Λ
- Probability Density Function (PDF) for K_S^0 , Λ , Ξ , Ω
 - extend beyond the average of the distribution
 - unique opportunity to test the connection between charged and strange particle multiplicity production

Comparison to models:

- in-vacuum hadronization (e.g. <u>Pythia</u>, <u>AMPT</u>, ...)
- thermal production: Statistical Hadronization Model (e.g. <u>GSI-Heidelberg</u>, <u>FIST</u>, ...)
- two-component models (e.g. <u>EPOS</u>, <u>DCCI</u>, ...)

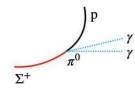


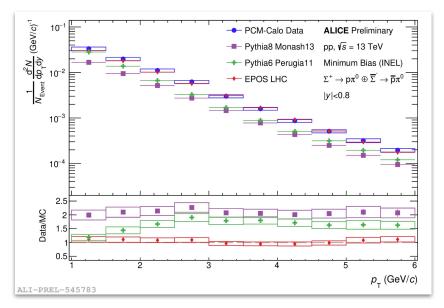
ALICE Coll., Eur. Phys. J. C 80 (1616) 693



V0M amplitude / (V0M amplitude)

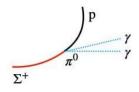
Photons reconstructed in the calorimeters or via the photon conversion method (PCM).

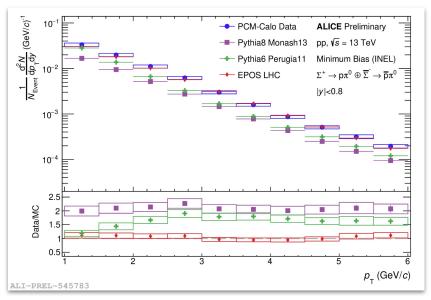


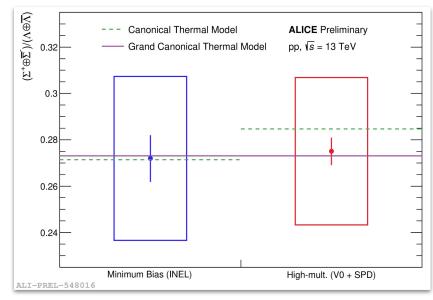


 $p_{\scriptscriptstyle
m T}$ -shape well reproduced by EPOS LHC and Pythia8, but the latter underestimates the yield

Photons reconstructed in the calorimeters or via the photon conversion method (PCM).



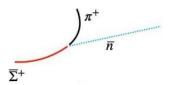


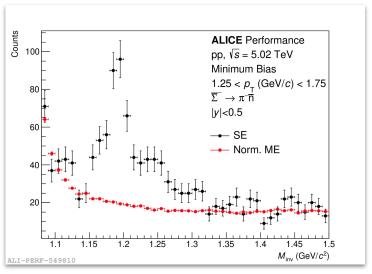


 p_{T} -shape well reproduced by EPOS LHC and Pythia8, but the latter underestimates the yield

 Σ/Λ does not depend on multiplicity (large uncertainties) and is reproduced by the thermal model

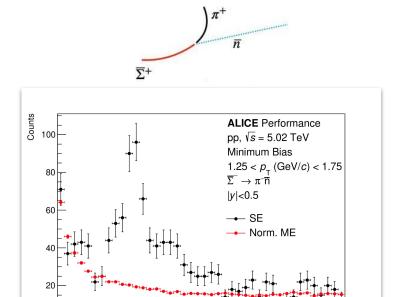
n detection from signal in the PHOS calorimeter + momentum reconstructed using time-of-flight





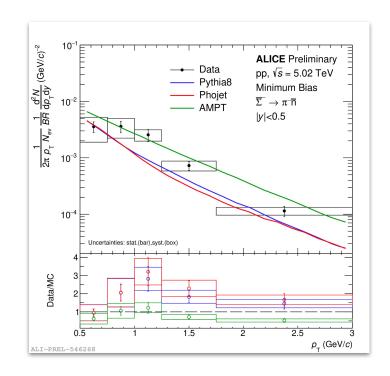
n detection from signal in the PHOS calorimeter + momentum reconstructed using time-of-flight

 $\overline{\Sigma}^{\pm}$ baryon production in pp at $\sqrt{s} = 5.02$ TeV



ALI-PERF-549810

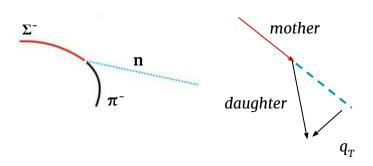
Production yield extracted in several $p_{\scriptscriptstyle \rm T}$ bins and compared to phenomenological models



Very promising technique. Uncertainties will shrink with Run 3

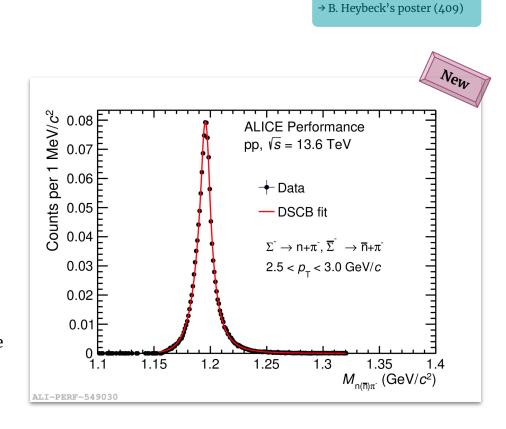
1.45

 $M_{\rm inv}$ (GeV/ c^2)

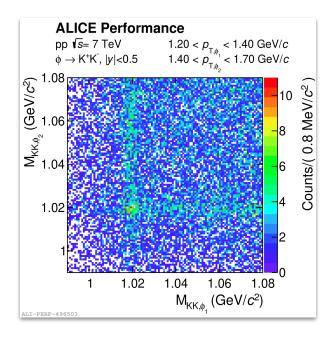


Kink-topology using the upgraded ITS2 detector

- combine same charge tracks
- minimize the distance between mother and daughter + apply several topological cuts
- q_T = momentum of the neutral daughter = difference between mother and charged daughter momentum
 → invariant mass of the mother can be evaluated

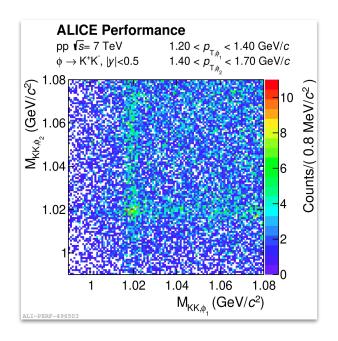


Measurement of the ϕ meson pair yield at mid-rapidity in MB pp collisions at $\sqrt{s} = 7$ TeV

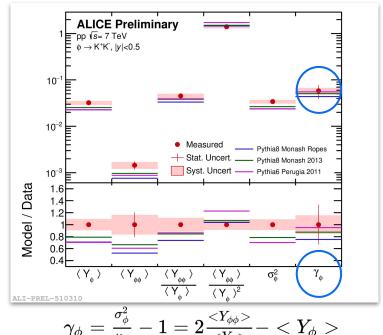


- 2D invariant mass technique in order to extract the signal
- Yield and $p_{\rm T}$ distribution extraction

Measurement of the ϕ meson pair yield at mid-rapidity in MB pp collisions at $\sqrt{s} = 7$ TeV



- 2D invariant mass technique in order to extract the signal
- Yield and $p_{_{\rm T}}$ distribution extraction

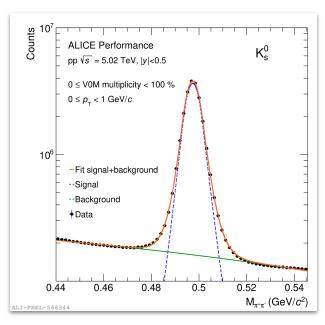


$$\gamma_{\phi}=rac{\sigma_{\phi}^2}{\mu_{\phi}}-1=2rac{< Y_{\phi\phi}>}{< Y_{\phi}>}-< Y_{\phi}>$$

- $\gamma_\phi=0$ for poisson distribution
- observed $\,\gamma_\phi>0\,$ $\,$ $\,$ $\,$ $\,$ $\,$ not poissonian

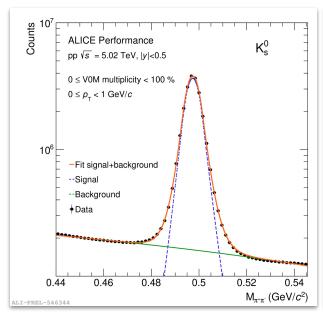
Analysis based on counting the number of strange particles event-by-event in pp collisions at \sqrt{s} = 5.02 TeV

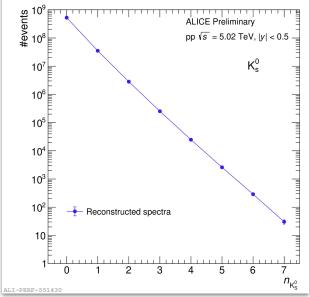
Multiple strange hadrons production: technique



Each candidate weighted by P(S) or P(B) estimated by 1D invariant mass fit in p_{T} /multiplicity bins

Analysis based on counting the number of strange particles event-by-event in pp collisions at \sqrt{s} = 5.02 TeV



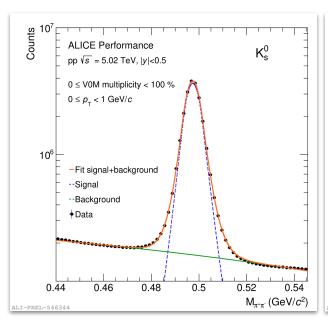


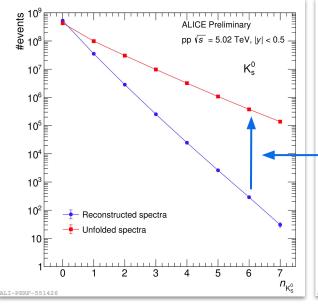
Each candidate weighted by P(S) or P(B) estimated by 1D invariant mass fit in p_{T} /multiplicity bins

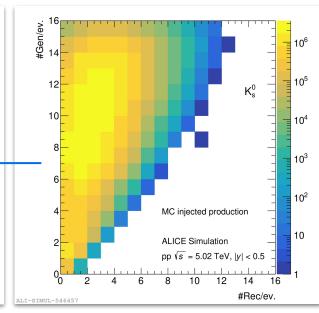
Weights associated to each of the N candidates combined to obtain: P(all-sig), ..., P(all-bkg)

For each event: full probability spectrum spanning from 0 to N

Analysis based on counting the number of strange particles event-by-event in pp collisions at \sqrt{s} = 5.02 TeV







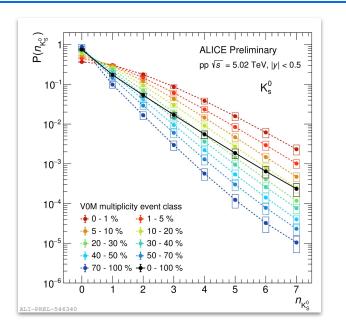
Each candidate weighted by P(S) or P(B) estimated by 1D invariant mass fit in p_{T} /multiplicity bins

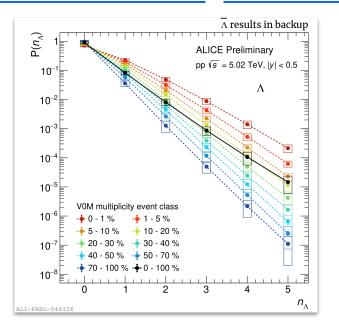
Weights associated to each of the N candidates combined to obtain: P(all-sig), ..., P(all-bkg)

For each event: full probability spectrum spanning from 0 to N

Correction for detector response (MC production: measured p_T distribution)

Bayesian unfolding procedure applied



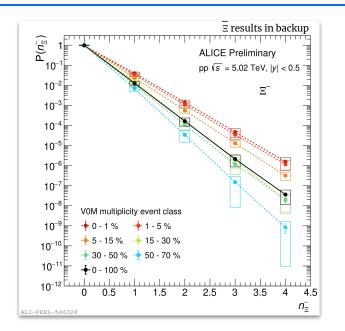


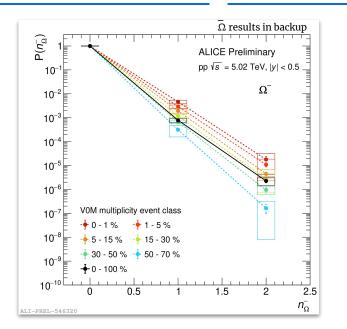
Probability to produce *n* particle (*n* up to 7 for K_s^0 , 5 for Λ) of a given species per event

Spanning across large ranges of strange/multiplicity variations, all the way to very "extreme" situations (e.g. $7 \, \text{K}_{\text{S}}^{0}$ at low average multiplicity, $0 \, \text{K}_{\text{S}}^{0}$ at high multiplicity)

Unique opportunity to test the connection between charged and strange particle multiplicity production

NOTE: in each V0M bin multiplicity can fluctuate and <dN_{ch}/d $\eta>$ can significantly change for events with small/large $n_{\rm S}$





Probability to produce *n* particle (*n* up to 4 for Ξ , 2 for Ω) of a given species per event

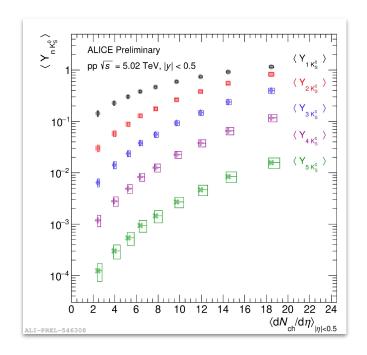
Spanning across large ranges of strange/multiplicity variations, all the way to very "extreme" situations (e.g. $4 \pm$ at low average multiplicity, $0 \pm$ at high multiplicity)

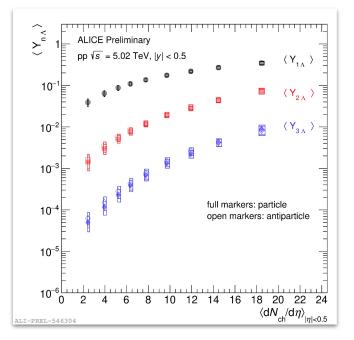
Unique opportunity to test the connection between charged and strange particle multiplicity production

NOTE: in each V0M bin multiplicity can fluctuate and <dN_{ch}/d $\eta>$ can significantly change for events with small/large $n_{\rm S}$

The PDF allows to calculate the production yield of 1, 2, 3, ... particles/event: $< Y_{k-part}> = \sum_{n=k}^{\infty} \frac{n!}{k!(n-k)!} P(n)$

$$0 < Y_{k-part} > = \sum_{n=k}^{\infty} rac{n!}{k!(n-k)!} P(n)$$

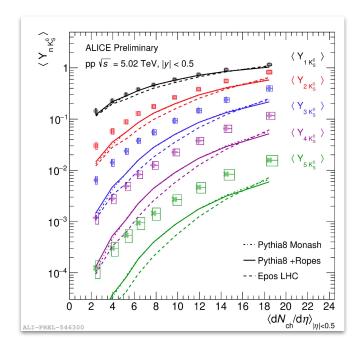


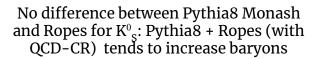


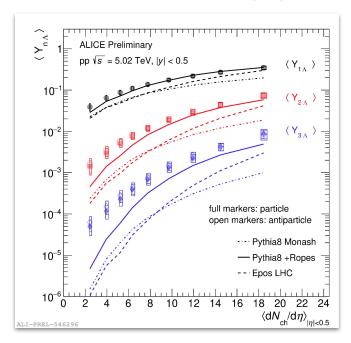
The increase with multiplicity of the probability for multiple strange hadrons is more than linear NOTE: very good agreement between $\langle Y_{1-nart} \rangle$ and previous results ([1],[2])

The PDF allows to calculate the production yield of 1, 2, 3, ... particles/event:

$$< Y_{k-part}> = \sum_{n=k}^{\infty} rac{n!}{k!(n-k)!} P(n)$$



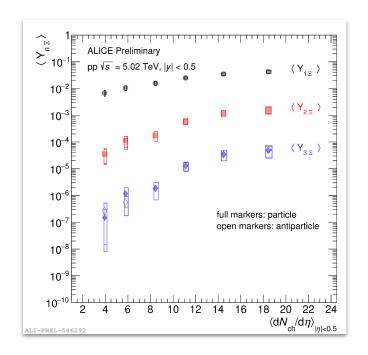




Ropes approaches the data at high multiplicity for Λ Epos LHC does a rather good job at high multiplicity, but shows larger discrepancy at low multiplicity

The PDF allows to calculate the production yield of 1, 2, 3, ... particles/event: $< Y_{k-part}> = \sum_{n=k}^{\infty} \frac{n!}{k!(n-k)!} P(n)$

$$< Y_{k-part}> = \sum_{n=k}^{\infty} rac{n!}{k!(n-k)!} P(n)$$

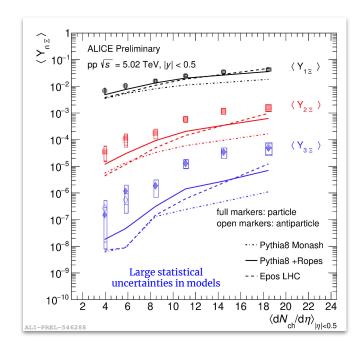


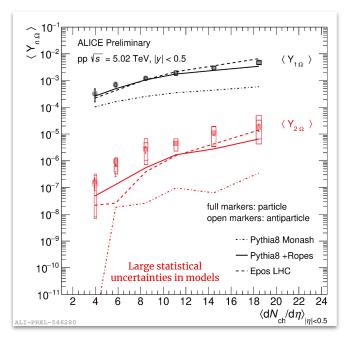


The increase with multiplicity of the probability for multiple strange hadrons is more than linear NOTE: very good agreement between $\langle Y_{1-nart} \rangle$ and previous results ([1],[2])

The PDF allows to calculate the production yield of 1, 2, 3, ... particles/event:

$$0 < Y_{k-part} > = \sum_{n=k}^{\infty} rac{n!}{k!(n-k)!} P(n)$$



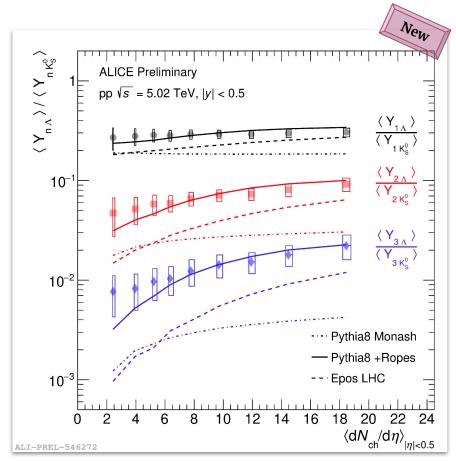


Ropes approaches the data at high multiplicity

Epos LHC does a rather good job at high multiplicity, but shows larger discrepancy at low multiplicity

Very important to disentangle baryon-related from strangeness-related effects!

- Increase of Λ/K_S^0 VS multiplicity when looking at multiple production!
- Possibly in all strange-hadron/ π VS multiplicity plots we have a strangeness-related AND a baryon-related contribution to the enhancement
- Baryon-related effect well reproduced by Ropes (with QCD-CR) at high multiplicity

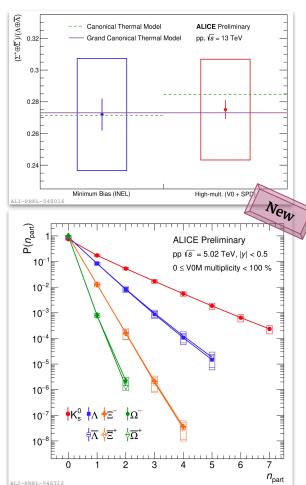


• First measurement of $(anti)\Sigma^{\pm}$ baryons at LHC energies:

- ightarrow 2 different techniques tested with Run 2 data
 - p_{T} distribution and Σ/Λ compared with phenomenological models
 - Σ/Λ does not depend on multiplicity

Multiple strange hadron production:

- → first measurements of the PDF for (multi-)strange particles
 - perfect benchmark to test production models in events spanning from extreme unbalances between charged and strange particle multiplicity
 - 2- and 3- Λ/K_S^0 yield ratios increase with multiplicity (baryon-related effect)



• First measurement of $(anti)\Sigma^{\pm}$ baryons at LHC energies:

- → 2 different techniques tested with Run 2 data
 - p_{T} distribution and Σ/Λ compared with phenomenological models
 - Σ/Λ does not depend on multiplicity

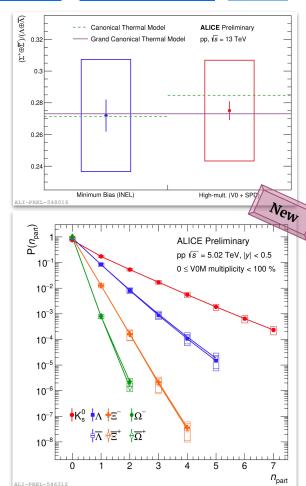
Multiple strange hadron production:

- → first measurements of the PDF for (multi-)strange particles
 - perfect benchmark to test production models in events spanning from extreme unbalances between charged and strange particle multiplicity
 - 2- and 3- Λ/K_S^0 yield ratios increase with multiplicity (baryon-related effect)

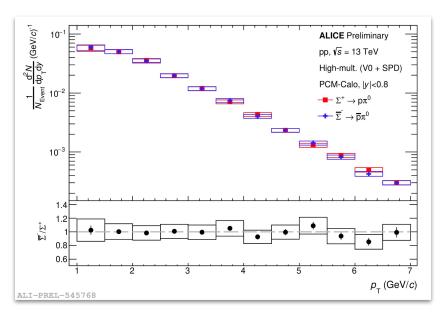
Run 3:

- will allow to apply kink topology to the measurement of (anti)Σ[±] baryons
- larger statistics (3/4 orders of magnitude higher) useful for cascade analyses
- for the future: extended PDF study to higher number of particles/event

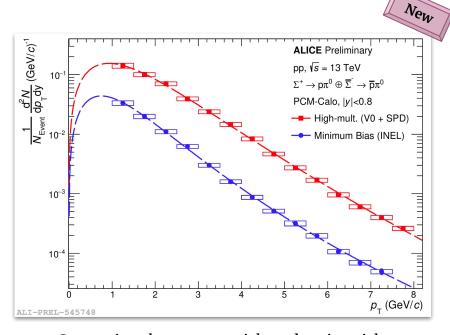
- → B. Heybeck's poster (409)
- → F. Ercolessi's talk (Tuesday, h 12.40)C. De Martin's poster (150)



Backup slides

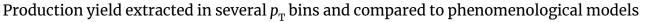


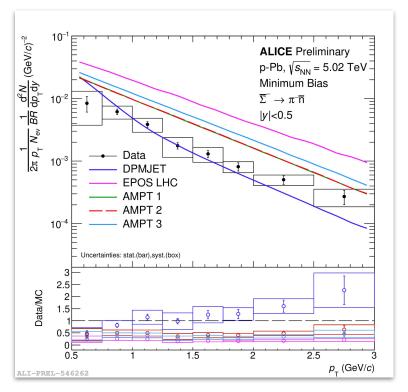
Comparison between particle and antiparticle p_{T} spectra \rightarrow good agreement



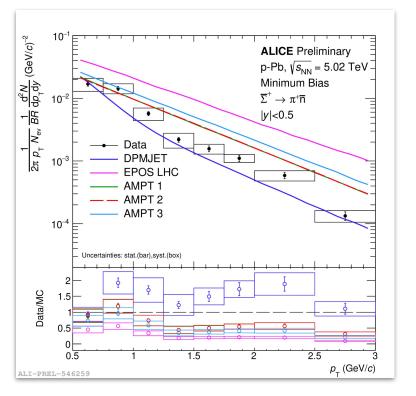
ightarrow Comparison between particle and antiparticle p_{T} -spectra in high multiplicity and minimum bias triggered pp collisions

→ Results have been fitted with a Levy-Tsallis function





 $\overline{\Sigma}^{\pm}$ baryon production in p-Pb at \sqrt{s} = 5.02 TeV



iterative procedure based on the Bayes' theorem using a picture of causes C ("true values") and effects E ("observed values")

$$P(C_i|E_j) = rac{P(E_j|C_i) \cdot \pi(C_i)}{\sum\limits_{i=1}^{n_C} P(E_j|C_i) \cdot \pi(C_i)}$$

 $P(E_i|C_i)$ estimated by using Monte Carlo (response matrix)

 $P(C_i|E_j) = \frac{P(E_j|C_i) \cdot \pi(C_i)}{\sum\limits_{i=1}^{n_C} P(E_j|C_i) \cdot \pi(C_i)} \begin{cases} P(C_i|E_j) \rightarrow \text{probability that different } C_i \text{ were responsible for the observed effect } E_j \rightarrow \text{GOAL} \\ \pi(C_i) \rightarrow \text{prior probabilities (initially arbitrary but undated} \end{cases}$

 $\pi(C_i) \rightarrow \text{prior probabilities}$ (initially arbitrary, but updated on subsequent iterations)

- Choosing a prior distribution in order to apply Bayes' theorem \rightarrow posterior probability matrix obtained
- Applied to "observed spectra" \rightarrow 1st estimation of the corrected spectra
- The corrected spectra obtained in the previous step becomes the prior probability and the correction proceeds as before
- Procedure is re-iterated until stability is achieved (regularization parameter: \mathbf{n}_{iter})

$$\hat{n}(C_i) = rac{1}{\epsilon_i} \sum_{j=1}^{n_E} n(E_j) \cdot P(C_i|E_j) = \sum_{j=1}^{n_E} M_{ij} \cdot n(E_j)$$

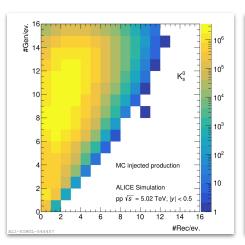
expected number of events in the cause bin $i \neq \infty$

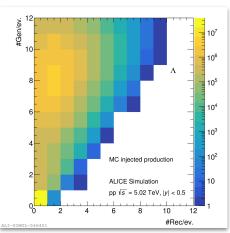
$$ightarrow M_{ij}$$
 is the unfolding matrix: $M_{ij} = rac{P(E_j|C_i)\cdot\pi(C_i)}{\epsilon_i\cdot\sum_{i=1}^{n_C}P(E_i|C_i)\cdot\pi(C_i)}$

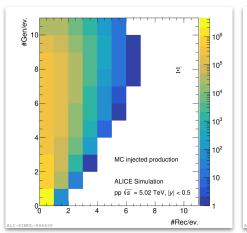
- $\rightarrow n(E_i)$ measurements (effects)
- $\rightarrow E_i$, efficiencies

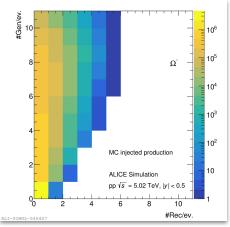
unfolding errors: covariance matrix

$$V(\hat{n}(C_k),\hat{n}(C_l)) = \sum\limits_{i,j=1}^{n_E} rac{\partial \hat{n}(C_k)}{\partial n(E_i)} V(n(E_i),n(E_j)) rac{\partial \hat{n}(C_l)}{\partial n(E_j)}$$

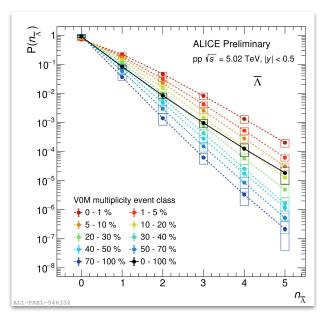


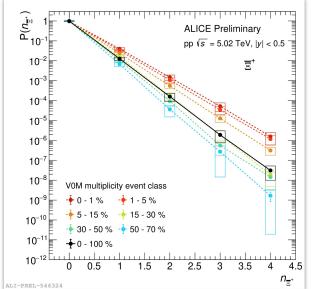


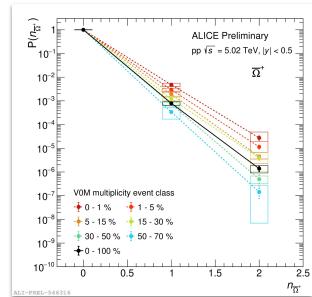




Moving from K_s^0 to Ω particle the response matrices are increasingly "squeezed" toward a low number of reconstructed particles/event







Probability to produce n particle (n up to 5 for $\overline{\Lambda}$, 4 for $\overline{\Xi}$, 2 for $\overline{\Omega}$) of a given species per event Spanning across large ranges of strange/multiplicity variations, all the way to very "extreme" situations

Unique opportunity to test the connection between charged and strange particle multiplicity production

NOTE: in each V0M bin multiplicity can fluctuate and <dN_{ch}/d $\eta>$ can significantly change for events with small/large $n_{\rm S}$