Sensitivity of the pp ridge to Hard processes

Soumya Mohapatra
(Columbia University)
for the ATLAS Collaboration

Quark Matter 2023

This work is supported by the United States Department of Energy Grant DOE-FG02-86ER-40281

The ridge in pp collisions

- The ridge in A+A collisions is understood to be a manifestation of collective flow.
- Try to further our understanding of the origin of the pp ridge
 - Does it arise from collective (hydro) behavior?
 - Or is it driven by semi-hard processes? Perhaps related to gluon saturation.
- If latter, then actively selecting/rejecting events with semi-hard processes (low- $p_{\rm T}$ jets) should enhance/weaken the ridge.
- Do constituents of jets themselves exhibit such correlation with the soft Underlying Event (UE) tracks?

h: inclusive hadrons (tracks) in the event

- h: inclusive hadrons (tracks) in the event
- h^{UE} : tracks from the underlying event (UE):
 - require that the track is at least one unit in $|\eta|$ from all jets with $p_T > 15$ GeV

- *h*: inclusive hadrons (tracks) in the event
- h^{UE} : tracks from the underlying event (UE):
 - require that the track is at least one unit in $|\eta|$ from all jets with $p_T > 15$ GeV
- h^{J} : track associated with a jet
 - require that the track is within a 0.4 cone of a $p_T > 40$ GeV Jet

- *h*: inclusive hadrons (tracks) in the event
- h^{UE} : tracks from the underlying event (UE):
 - require that the track is at least one unit in $|\eta|$ from all jets with $p_T > 15$ GeV
- h^{J} : track associated with a jet
 - require that the track is within a 0.4 cone of a $p_T > 40$ GeV Jet

- Measure 2PCs between all tracks in all events:
 - h-h

- h: inclusive hadrons (tracks) in the event
- h^{UE} : tracks from the underlying event (UE):
 - require that the track is at least one unit in $|\eta|$ from all jets with $p_T > 15$ GeV
- h^{J} : track associated with a jet
 - require that the track is within a 0.4 cone of a $p_T > 40$ GeV Jet

- Measure 2PCs between all tracks in all events:
 - h-h
- Measure 2PCs between tracks not associated with jets:
 - h^{UE} - h^{UE} WithJets: In events with at least one $p_T > 15$ GeV Jet \leftarrow
 - h^{UE} - h^{UE} NoJets: In events without even a single p_T >15 GeV Jet
 - h^{UE}-h^{UE}: In inclusive events

- h: inclusive hadrons (tracks) in the event
- h^{UE} : tracks from the underlying event (UE):
 - require that the track is at least one unit in $|\eta|$ from all jets with $p_T > 15$ GeV
- h^{J} : track associated with a jet
 - require that the track is within a 0.4 cone of a $p_T > 40$ GeV Jet

- Measure 2PCs between all tracks in all events:
 - h-h
- Measure 2PCs between tracks not associated with jets:
 - h^{UE} - h^{UE} WithJets: In events with at least one $p_T > 15$ GeV Jet \leftarrow
 - h^{UE} - h^{UE} NoJets: In events without even a single p_T >15 GeV Jet
 - *h^{UE}-h^{UE}*: In inclusive events
- UE-Jet 2PCs:
 - h^{UE} - h^{J} : 2PC between UE and jet constituents

Complications in h^{UE} - h^{U} two-particle correlations

- Combinatorial pairs:
 - h^{UE} tracks that happen to be within the Jet Cone lead to h^{UE} - h^{UE} pairs

Complications in h^{UE}-h^J two-particle correlations

- Combinatorial pairs:
 - h^{UE} tracks that happen to be within the Jet Cone lead to h^{UE} - h^{UE} pairs
- Corrected using mixed-events
 - Take the acceptance from an h^{UE} - h^{J} event.
 - Estimate the combinatorial h^{UE} - h^{UE} pairs using an unbiased event having similar multiplicity.

Bias due to UE modulation

- More likely to reconstruct jets where UE is larger
- A Pythia study demonstrates this bias.
 - PYTHIA jets embedded into data events
 - PYTHIA jet more likely to be reconstructed when aligned with Ψ_2 orientation,
- Effect larger when UE multiplicity is larger!
- Cannot be removed by increasing p_T threshold on jet.
- Need alternate grooming procedure

Grooming the Jets

- Limit jet constituents to $p_{\rm T}$ -range where contributions from UE is negligible.
 - Tried ranges of 2-5 GeV
- Increasing $p_{\rm T}$ -threshold reduces bias in PYTHIA study
- $p_{\rm T}$ -threshold of 4 GeV removes bias even at the highest multiplicities.
- Jets in this study therefore constructed only clustering $p_T>4$ GeV constituents.

Two-particle correlations : h^{UE}-h^{UE}

- 2PC for h-h (left), h^{UE}-h^{UE} NoJets (middle), h^{UE}-h^{UE} WithJets (right)
- Charged particle multiplicity is measured excluding jet constituents
 - Ensure the event activity is not biased by the presence of jets
 - Only reflects the soft multiplicity in the event
- Template-fit is used to extract v_2
- Near-side ridges are observed in h^{UE}-h^{UE}

Two-particle correlations: h^{UE}-h^J

- h^{UE}-h^J 2PC for different multiplicity bins
- No ridge is observed in for any multiplicity interval!
- At face value indicates the ridge is not related to Jets/hard processes

v₂: comparison between cases

- The v₂ values are observed to vary weakly with multiplicity,
 - v₂ values for the h^{UE}-h^{UE} correlations: NoJets, WithJets and All Events are identical
 - Removing particles associated with jet has negligible impact on v₂
 - Presence/absence of Jets in events does not impact the v₂
- h^{UE} - h^{J} v_2 consistent with zero within uncertainties
 - Ridge is not related to jets!

v₂: comparison between cases

- The v₂ values are observed to vary weakly with multiplicity,
 - v₂ values for the h^{UE}-h^{UE} correlations: NoJets, WithJets and All Events identical
 - Removing particles associated with jet has negligible impact on v₂
 - Presence/absence of Jets does in events not impact the v₂
- h^{UE} - h^{J} v_2 consistent with zero within uncertainties
 - Ridge is not related to jets!
 - Both as function of multiplicity and p_{T}

Summary

- Absence or presence of jets in pp collision does not impact v_2
 - h^{UE}-h^{UE} Correlations are identical in events with/without Jets
- UE modulation affects jet energy even in pp collisions
 - Used a groomed p_T to account for this effect
- Jet fragments do not exhibit correlations with UE particles
 - h^{UE} - $h^{J}v_2$ consistent with zero
 - Hard scattering and soft collectivity unrelated in pp collisions
- Effect in contrast with that in A+A and p+A collisions
 - A+A collisions: Jet-UE correlations from path-length dependent quenching

Summary

- Absence or presence of jets in pp collision does not impact v_2
 - h^{UE}-h^{UE} Correlations are identical in event
- UE modulation affects jet energy even
 - Used a groomed p_T to account for this effe
- Jet fragments do not exhibit correlat
 - h^{UE} - $h^{J}v_{2}$ consistent with zero
 - Hard scattering and soft collectivity unrela

- Effect in contrast with that in A+A and p+A collisions
 - A+A collisions: Jet-UE correlations from path-length dependent quenching
 - p+A collisions: see ~2% v_2 at high- p_T

Backups

v_2 : Dependence on jet- p_T cut

Relationship between groomed and calibrated p_T

- Comparison of $p_{\rm T}^{\rm G}$ to original jet $p_{\rm T}$ in data (left) and PYTHIA 8 (right)
- Low multiplicity events are used as UE bias is negligible
- Fit coefficients are similar between data and MC

Multiplicity distributions

