Entanglement entropy measurements from p-p collisions
at LHC energies

Alek Hutson, Rene Bellwied, Dhevan Gangadharan

® . .
University of Houston
Introduction
. We propose a new method for understanding particle production and thermal-like behavior Entang]ement Entr()py (initial-state)
Gibbs Entropy (ﬁnal state) in high energy collisions based on first principles in quantum mechanics. While it seems . . .
* Gibbs entropy is a thermodynamic quantity that measures evident that there is a relation between entanglement entropy in the initial state and * Entanglement entropy 1s a metric for understanding the level of
the de gree o f disorder. or randomness. in a system thermodynamic entropy in the final state in e-p systems. It is not yet clear whether this holds entanglement between two or more quantum systems.
’ ’ ' 4 true in hadron collisions. : : . .
* [t quantifies the amount of information that is shared between

* This 1s calculated using a probability distribution of the )
number of microstates. In this case the number of hadrons > 5 < 0 < 10 GeV?

particles (partons) and can be used to characterize their degree

of correlation.

* The more hadrons produced the higher the entropy. 3 * A proton represents a pure state; meaning the partons are fully

* While the Gibbs entropy 1s defined under different context correlated and maximally entangled.
than entanglement entropy, each of these definitions

attempts to quantify the disorder of the system. And each 1s

* The interacting proton can be segmented into an interaction
region (A) and a region that remains unprobed (B).
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proportional to the number of particles. ; 1 0@ + ag) j Entanglement entropy arises between these two regions.
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The final-state entropy increases with the mean of the distribution and

the energy of the collision. 0.1
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Conclusions and future work

Entropy vs. x
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