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Abstract. I review recent progress in lattice QCD calculations of the QCD
phase diagram and equation of state at non-zero temperature and baryochemical
potential. I also discuss some connections with heavy ion collisions.

1 Introduction

The study of QCD under extreme conditions has been a very active field of research for
decades. In particular, the study of the phase diagram in the temperature (T )-baryochemical
potential (µB) plane has garnered lots of interest by both the experimental and theoretical
communities. Lattice QCD calculations have been very important in this quest, as lattice
can deliver fully non-perturbative results in full QCD. Indeed, lattice results on QCD matter
have been influential. Lattice QCD has shown [1], that the deconfinement/chiral transition at
µB = 0 is not a true phase transition, but rather a smooth crossover. Furthermore, the equation
of state at µB = 0 is also well established [2–4]. At µB > 0, model calculations predict a
critical endpoint [5–9] , where the crossover line becomes a line of first order transitions.
Locating the position of this critical endpoint (CEP) is a main goal of heavy ion physics.
First principle lattice QCD simulations at µB > 0 are hampered by a sign problem. Thus,
most results on physics at µB > 0 come from extrapolations. Either from Taylor coefficients
at µB = 0, or from results at purely imaginary chemical potentiala, i.e., µ2

B ≤ 0. Here, I
discuss results on the transition line and the width of the crossover at µB ≥ 0, baryon number
fluctuations, as well as the equation of state, isentropes and critical lensing.

2 The transition temperature and width at small µB

The value of the crossover temperature at µB = 0 is well established [10, 11]. A recent, precise
calculation [12] gives Tc(µB = 0) = 158.0 ± 0.6 MeV. This value approximately agrees with
(or is maybe slightly higher than) the chemical freeze-out temperature extracted from heavy
ion collision data at higher collision energies [13–16], in accordance with expectations [17].
At µB > 0, the crossover temperature is usually written as a Taylor expansion:

Tc(µB)
Tc(0)

= 1 − κ2

(
µB

Tc(µB)

)2

− κ4

(
µB

Tc(µB)

)4

+ . . . . (1)

The expansion is written in terms of µB/Tc(µB) and not µB due to technical convenience on
the lattice, but the coefficients κ2 and κ4 can be easily converted to Taylor coefficients in
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Figure 1. Extrapolation of the width of the crossover transition to real µB.

the chemical potential µB itself [18]. For the κ2 coefficient, calculations by three different
lattice groups, using both the imaginary chemical potential and Taylor methods are in good
agreement [12, 19–22]. For the κ4 coefficient, there are two calculations at the moment, one
with the Taylor method [22], and the other with the imaginary chemical potential method [12].
The most precise determination of the κ2 and κ4 coefficients - based on the chiral condensate
- is given in Ref. [12] as κ2 = 0.0153 ± 0.0018 and κ4 = 0.00032 ± 0.00067. Thus, the
transition line on the phase diagram is - to a very good approximation - a parabola. A joint
Bayesian analysis [18] of the Taylor coefficient data of Ref. [22] and the imaginary chemical
potential data of Ref. [12] suggest that the transition line can be well approximated with a
parabola in µB (but not in µB/Tc(µB)) up to chemical potentials as high as µB ≈ 600 MeV. At
large µB the chemical freeze-out curve is expected to approach the nuclear-liquid gas critical
point [23] and not the chiral CEP. Thus, the chiral transition curve and the freeze-out curve
should deviate at some value of µB. Where and how this deviation happens is an important
open question.

Knowing the Tc(µB) curve does not automatically lead to a determination of the position
of the CEP. For that purpose, other observables have to be considered. One possibility is the
width of the transition: Since the transition at µB = 0 is a crossover, there is no non-analyticity
in the free energy, and thus no sharp point of transition. Rather, there is an extended transition
region in T , which can be characterized with a width parameter. One definition of a width
parameter σ is given in Ref. [12], where this width parameter was extrapolated to real µB

using the imaginary chemical potential method. The results are shown in Fig. 1. σ going
to zero would indicate the presence of a CEP. The results show that for small µB the width
σ is approximately constant: The transition does not get narrower below the value of µB ≈

300 MeV. Another way to see the approximately constant width of the crossover is through
the existence of an approximate scaling variable [24–26]. The existence of this approximate
scaling variable is illustrated in Fig. 2, where the baryon-density-to-chemical potential ratio

χB
1 /(µB/T ) is plotted as a function of T (left panel) and as a function of of T

(
1 + κ2

(
µB
T

)2
)

the curvature of the transition line 1. Thus, Figs. 1 and 2 tell the same story: the story of a
crossover transition whose temperature depends on the chemical potential, but its width does
not. What happens with the width of the transition at larger µB is an open question.

1The numerical value of κ2 in Section 2 and in Figure 2 is different, because is Section 2, the result is quoted
for the phenomenologically most relevant case of strangeness neutrality nS = 0, while Figure 2 is for illustration
purposes only, and uses the simpler case of zero strangeness chemical potential µS = 0.
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Figure 2. Collapse plot for the baryon density-to-chemical potential ratio.

3 Baryon number fluctuations

An important set of quantities are the generalized susceptibilities of the baryon number:
derivatives of the pressure with respect to µB, written as χB

n (T, µB) = ∂(p/T 4)
∂n(µB/T )n . Evaluating

these at µB = 0 is possible, and allows for a Taylor expansion of the pressure:

p(T, µB) − p(0, µB)
T 4 =

1
2!
χB

2 (T, 0)
(
µB

T

)2
+

1
4!
χB

4 (T, 0)
(
µB

T

)4
+ . . . . (2)

Differentiation of the above formula allows for a Taylor expansion of the susceptibilities
χB

n (T, µB) also, with the coefficients also given by χB
n (T, 0). The coefficients χB

n (T, µB = 0)
are thus important for several applications, such as the extrapolation of the equation of state
to µB > 0, extrapolation of susceptibilities to search for signs of criticality, to probe the
effective degrees of freedom of QCD matter [27–29] or to study chemical freeze-out in heavy
ion collisions (for the difficulties in comparing with experiments, see, e.g., Refs. [30–32]).

The lattice QCD community has spent considerable effort in calculating these coefficients.
The highest order coefficient available from the lattice is χB

8 [33–37]. In Fig. 3 three different
lattice QCD results are shown for the the coefficients χB

6 and χB
8 . The green bands are results

of the HotQCD collaboration [36], using the Taylor method and a coarser lattice, with 8
timeslices. The black points are results from the Wuppertal-Budapest collaboration [34],
using the imaginary chemical potential method, on a finer lattice, with 12 timeslices. Finally,
the orange bands shows recent results from the Wuppertal-Budapest collaboration [37] in the
continuum limit, using the Taylor method, but with a physical box size L that is half the value
of that of the other two calculations. There is a striking tension between the green bands and
the other two results, which makes one conclude that the Nτ = 8 results from the HotQCD
collaboration are probably effected by large cut-off effects. On the other hand, agreement
between the black point and the orange bands below T = 145 MeV indicate that in this range
(which is the most relevant range for the CEP search) the finite volume effects are already
negligible for the smaller volume result from Ref. [37]. The lattice results are compared
with the prediction from the hadron resonance gas (HRG) model (solid black line). We can
conclude that the Taylor coefficients up to 8th order are in good agreement with the HRG
model for all temperatures below T ≈ 145 MeV, as long as the continuum limit is taken2.

Since the HRG is a non-critical model, often used as a noncritical baseline for compar-
isons, it is safe to say that as long as the continuum limit is taken, current lattice data show no

2Since corrections to the HRG model are expected to be exponentially suppressed at small T [38] agreement for
the range available on the lattice implies that χB

6 and χ8
B will likely also agree with the HRG at lower temperatures.
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Figure 3. 6th (left) and 8th order baryon number fluctuations (right) at vanishing chemical potential
from different lattice calculations (see main text). Solid black lines show predictons of the HRG model.

sign of the CEP. Let me warn the reader here, that this does not imply that the CEP does not
exist. It is also a possiblity, that it exists, but its effects on coefficients up to χB

8 are smaller
than the current error bars, or that its effects are only substantial for higher order coefficients.

Finally, let me note that there have been attempts to extract the position of the leading sin-
gularity of the QCD free energy from lattice QCD data [39–42], with the hope of eventually
arriving at a prediction for the critical endpoint position. Unfortunately, these calculations
have all been based on lattice QCD results on coarse lattices. Considering the rather large
cut-off effects at µB > 0, which can be seen, e.g., in the green bands of Fig. 3., these works
are at the moment only of technical interest to lattice practitioners, and don’t have any solid
indications for heavy ion phenomenology.

4 The equation of state, isentropes and critical lensing

The most straightforward way of estimating the equation of state of hot-and-dense QCD mat-
ter is via a straightforward substitution to eq. (2). At order χB

4 , this gives accurate results for
about µB/T < 2 [43]. Going to order χB

8 extends this range up to at least µB/T = 3 [43].
Alternatively, one can use the lower order coefficients χB

2 and χB
4 and their temperature inde-

pendence to calculate a resummation of the Taylor series (an alternative expansion scheme),
introduced in Refs. [24, 26]. The resummation scheme is based on the existence of the ap-
proximate scaling variable in Fig. 2, but also allows for taking into account small deviations
from this scaling. This resummation also is accurate at least to µB/T = 3 [43], but potentially
even higher, since unlike a truncated Taylor expansion, conditions of thermodynamic stabil-
ity in this case are manifest [24]. Recent results from the Taylor expansion can be found in
Ref. [36] and from the discussed resummed expansion in Ref. [26]. Both of these works take
into account the strangeness neutrality condition nS = 0. Ref. [26] also gives the equation of
state for a small non-zero value of the strangeness density nS , which allows practitioners of
hydrodynamic simulations to take into account local fluctuations of the strangeness density.

One application of the equation of state is the calculation of isentropes: curves of constant
entropy density to baryon density ratio s/nB in the T − µB plane. Near the CEP, they are
expected to show the phenomena of critical lensing [44, 45]: the CEP pulls the isotropes
towards itself, increasing their local density in the critical region. Fig. 4 shows the isentropes
from the resummation/alternative expansion scheme. While the alternative scheme can reach
larger values of µB, the qualitative conclusion from the Taylor expansion and the resummation
are the same: within errors, and within covered values of µB, there is no critical lensing. The
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Figure 4. Isentropes of the T -µB plane from the alternative expansion scheme of Refs. [24, 26]

largest density isentrope, with s/nB = 20 roughly corresponds to the smallest collision energy
available in the RHIC Beam Energy scan [46, 47].

5 Summary and outlook

I have discussed lattice QCD calculations of the QCD phase diagram. Currently lattice results
are available in a range of baryochemical potentials that roughly overlaps with the experimen-
tal range of the RHIC Beam Energy Scan (in collider mode). Thus, in spite of the difficulty
of the sign problem, first-principles theory has mostly managed to keep up with the experi-
mental effort. This is in part due to an increase in the available computational resources, and
in part due to the invention of new extrapolation techniques, such as the alternative expansion
scheme/resummation of Refs. [24, 26]. Continuum extrapolated lattice QCD results lead to
a rather consistent picture: a crossover transition with a temperature that is µB dependent,
but with a width that is approximately constant in µB for at least most of the range of the
RHIC Beam Energy Scan. While the state-of-the-art lattice results do reach the end of the
RHIC range, at the largest densities, the errorbars start to increase. E.g., while there is no
sign of critical lensing in Fig. 4, the current error bars do allow for some of it for the largest
densities reached at RHIC in collider mode. Thus, results from phase II of the RHIC Beam
Energy Scan should be interesting, as they will shed some light on the position of the coveted
critical endpoint. For theory to also keep up with future experiments, where considerably
larger densities will be studied, theoretical/calculational innovations will be necessary. Such
developments will be a priority for the lattice QCD community in the coming years.
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