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Abstract. As an important set of thermodynamic quantities, knowledge of the
equation of state over a broad range of temperatures and chemical potentials in
the QCD phase diagram is crucial for our understanding of strongly-interacting
matter. There is a good understanding from first-principles results in lattice
QCD, perturbative QCD and chiral effective field theory about the equation of
state. However, these approaches are valid in different regimes of the phase dia-
gram, and therefore, a method of providing an equation of state that covers a full
range of the phase diagram involves matching together these results with appro-
priate models in order to fill in the gaps between these regions. Furthermore,
with such equations of state, important questions about QCD phase structure
can begin to be addressed, such as whether there is a critical point in the QCD
phase diagram. In this contribution to the proceedings, equations of state from
first-principles and effective theories will be discussed in order to understand
how QCD thermodynamics is affected by the presence of a critical point.

1 Introduction

The phase structure of strongly-interacting matter has been a focus of efforts for both the
theoretical and experimental communities for decades. Upon exploration of the QCD phase
diagram, the question being probed is how does strongly-interacting matter respond to heat,
i.e. increasing temperature, and compression, i.e. increasing density. Therefore, the QCD
equation of state (EoS) is the object of study lending from the fact that these are thermo-
dynamic properties. First-priniciples lattice QCD calculations have given insight into the
zero and low-to-moderate density equation of state [1–5]. Also from the lattice with good
precision, the transition temperature at vanishing chemical potential has been calculated as
well as the curvature of the transition line and where it lies up to µB ≃ 2.5T [6, 7]. In the
low-temperature region of the QCD phase diagram, the system is rather well-described by an
ideal gas of hadrons and their resonances [8–11]. However, as the density, or equivalently
chemical potential, increases, nuclear matter exhibits a liquid-gas phase transition in the low
temperature regime that is described by an interacting van der Waals equation of state [9].
Furthermore, chiral effective field theory is the appropriate low energy theory that covers the
low-temperature and low-to-moderate-density regime [12]. On the other hand, at asymptot-
ically high temperatures and densities, perturbative QCD (pQCD) results yield access to the
asymptotic regime of the QCD phase diagram [13–15]. From the perspective of connecting
to the observable universe, zero temperature calculations from chiral effective field theory
and pQCD can be combined with astrophysical constraints to learn about the QCD equation
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of state [16, 17]. On the other hand in terms of terrestrial experiments, along the T−axis of
the QCD phase diagram are high energy heavy-ion collisions, such as those conducted at the
Large Hadron Collider (LHC) at CERN [18, 19]. Furthermore, by decreasing collider energy,
the phase diagram at non-zero baryon chemical potential can be explored, which is a main
focus of the Beam Energy Scan (BES) program at the Relativistic Heavy Ion Collider (RHIC)
at Brookhaven National Lab [20].

In light of these varied sources across theory, experiment, and astrophysical observation,
there is a plethora of information about the phase structure of QCD within the regimes of
validity of each of them [21]. These, therefore, yield the ground truth knowledge of the QCD
EoS, which, however, does not cover the entire reach of the phase diagram. Thus, many
questions remain about the phases of QCD. For example, does the crossover phase transi-
tions proven by lattice calculations [22] become a proper first order phase transition at larger
chemical potentials? This would imply that there is a critical point somewhere in the phase
diagram where the change in transition type occurs. The search for this critical point has been
pursued in part by studying critical fluctuations related to the diverging correlation length at
the critical point [23–25]. On the other hand, where does the transition line lie at high den-
sities which are beyond the current reach of lattice calculations? This question in essence
probes whether the densities found in neutron stars are large enough to create deconfined
quark matter. There are a number of further profound questions about the nature of strongly-
interacting matter beyond the reaches of current experimental and theoretical methods. Thus,
in order to explore these questions from the theory side, a method of piecing the current first-
principles knowledge together with models of QCD is required in order to fill in the gaps in
the phase diagram. The goal of the MUSES collaboration is to provide equations of state
along these lines. The forthcoming publicly available software will allow for user-specified
coverage of the phase diagram and user-defined conditions in addition to the choice of model
in the region of applicability.

As mentioned previously there are many open questions about QCD phase structure, here
I will focus on the regime covered by high energy heavy-ion collisions due to the brevity
required for proceedings. In this contribution, I will address the question of how QCD ther-
modynamics are affected by critical features in the phase diagram.

2 Equation of State at Finite Temperature and Density

2.1 Utilizing a critical equation of state to estimate equilibrium proton fluctuations

In order to study the effect of a critical point that could potentially be observed in the BES-II
program at RHIC, the 3D Ising model is utilized to map such critical behavior onto the phase
diagram of QCD. The 3D Ising model was chosen for this approach because it exhibits the
same scaling features in the vicinity of a critical point as QCD, in other words, they belong
to the same universality class [26, 27]. The mapping of the critical behavior onto the QCD
phase diagram is, however, not universal, which is to say that there are no strict mapping
parameters that exist a priori between the Ising phase diagram and the one for QCD. Such a
map can be constructed in the following way as in the BEST equation of state [28, 29]:

T − Tc

Tc
= ω(ρr sinα1 + h sinα2) (1)

µB − µB,c

Tc
= ω(−ρr cosα1 − h cosα2) (2)

Utilizing this mapping, we study the critical fluctuations in the Ising model in order to
calculate the proton fluctuations near a critical point. We provide an update to the approach



laid out in Ref. [30] for calculating such particle fluctuations. This update includes utilizing
the critical correlation length from universality. We, additionally, further rely on universality
in order to extract the higher order couplings, λ, of the fluctuations:

κ3 = 2λ3VT 2ξ6 κ4 = 6VT 3[2(λ3ξ)2 − λ4]ξ8 (3)

Following the work of Pradeep, Rajagopal, Stephanov, and Yin on Gaussian fluctuations
[31], we explore the higher order non-Gaussian fluctuations in- and out-of-equilibrium. As
pertains to this contribution centered on the equation of state, an equilibrium thermodynamic
property, we will focus on the equilibrium results related to that work.

The first part of updating the estimates for proton fluctuations involves the input for the
correlation length from universality. The scaling form of the correlation length in the Ising
model, which follows Widom’s scaling form in terms of Ising model variables, can be written
as [32]:

ξ2(r,M) = M−2ν/β fξ(r/M1/β), (4)

where ν is the correlation length critical exponent, fξ is the scaling function and the scaling
parameter is x= r

M1/β .
In the ϵ-expansion, the function fξ is given to O(ϵ2) as [33]:
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{
1 −
ϵ

36
[(5 + 6 ln 3)z − 6(1 + z) ln z] + ϵ2

[1 + 2z2

72
ln2 z +

( z
18

(
z −

1
2

)
(1 − ln 3)

−
1

216

(
16z2 −

47
3

z −
56
3

))
ln z +

1
216

(101
6
+

2
3

I + 6 ln2 3 + 4 ln 3 − 10
)
z2

−
1

216

(
6 ln2 3 +

44
3

ln 3 +
137

9
+

8
3

I
)
z
]}

(5)

where f +1 is a non-universal critical amplitude, z ≡ 2
1+x/3 , I ≡

∫ 1
0

ln[x(1−x)]
1−x(1−x) dx ∼ −2.3439, and

ϵ = 4 − d, where d is the spatial dimension.
One may also write the parametric form of the correlation length in the Ising model in

terms of the parametric variables (R, θ) as [32]:

ξ2(M, t) = R−2νgξ(θ), gξ(θ) = gξ(0)(1 −
5
18
ϵθ2 + O(ϵ2)). (6)

In this case the parametric equation of state is defined as:

M = M0Rβθ h = h0Rβδh̃(θ) r = x0R(1 − θ2) (7)

where x0 = b1/β/(b2 − 1), h(θ) = h0θ(b2 − θ2)(1 + cθ2) + O(ϵ4), /, b2 = 3
2 (1 − ϵ

2

12 ), /, c =
− ϵ

3

18 (ζ(3) + I−1
4 ). With these calculations, we further expand the correlation length to O(ϵ2).

Thus, the θ-dependence of the correlation length to O(ϵ2) is then given by:

g̃ξ = g̃ξ(0)
(
1 −

5
18
ϵθ2 +

[ 1
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]
ϵ2)

)
. (8)

We utilize this updated correlation length to O(ϵ2) in order to be consistent with the equation
of state which is valid to the same order in the ϵ-expansion.

On the other hand, we also take into account the µB-dependence of the couplings λ3 and
λ4, as shown in Eq. 3. Since we know that the 4th order moment is expected to exhibit



a sign change [25], these couplings will not simply be constants, which provides another
modernization of the work in Ref. [30]. We extract these higher order couplings via the
knowledge of the correlation length and fluctuations in the Ising model. In order to study this
µB-dependence of the critical correlation, we need to choose the non-universal parameters of
the Ising-QCD mapping. We choose parameters for our EoS in order to be consistent with
recent results from STAR [34]. Furthermore, our choice also obeys constraints from univer-
sality studied by Pradeep and Stephanov in Ref. [35] as well as those given by causality and
stability of the BEST EoS as shown by Mroczek et al in Ref. [36]. As such, we move away
from the choice of orthogonal Ising axes as given by the canonical choice in the BEST EoS in
Refs. [28, 29] in order to agree with constraints from the universal features of this mapping
shown by Pradeep and Stephanov. Consequently, in order to have both the constraints prop-
erly taken into account and a strength of divergence that will reasonably agree with results
from STAR net-proton energy dependence, we must modify the choice of scaling parameters,
w, ρ. However, as shown in the analysis of the BEST EoS parameter space by Mroczek et al
in Ref. [36], decreasing the angle difference, i.e. moving away from orthogonality, leads to a
restriction of the allowed values for w, ρ. Thus, we arrive at the following choice of mapping
parameters.

µB,c = 420 MeV ∆α = α1 − α2 = 10◦ w = 8 ρ = 0.2

Finally, with inputs from universality for both the correlation length and the µB-dependent
couplings, we calculate the 3rd and 4th order proton fluctuations, similar to Ref. [30],

ω3p,σ =
2λ̃3

T 3/2 np
ξ9/2

(
dp gp

∫
k

v2k
γk

)3

ω4p,σ =
6(2λ̃2

3 − λ̃4)
T 2 np

ξ7
(
dp gp

∫
k

v2k
γk

)4

(9)

where the dimensionless λ’s are given by λ̃3 = λ3(T 1/2ξ3/2), λ̃4 = λ4(Tξ), np is the proton
density, and the kinematic integrals involve the degeneracy, dp, and the proton coupling to
the sigma field gp. We consider a coupling gp ∼ 7 as in Ref. [30].

Figure 1 shows the 4th order proton fluctuations in the phase diagram (left) and along
several freeze-out trajectories (right). The freeze-out curves are taken to be 3, 5, and 7 MeV
below the critical point. The freeze-out curve at ∆T = 5 MeV is from the fit to experimental
results performed in Ref. [37], while the other two are simply a shift from this established
freeze-out curve to show a range of possibilities within errors. The order of magnitude of the
fluctuations is very sensitive to the path of the freeze-out curve through the phase diagram.
Taking the experimentally fitted curve at ∆T = 5 MeV, the fluctuations are O(102). However,
these are still equilibrium quantities which are not to be compared with experimental results.
A treatment such as the one in Ref. [31] for these higher order moments is first required.
Therefore, given these large equilibrium results and what is known about the effects of freez-
ing out critical fluctuations from Ref. [31], we expect the experimental results to be reduced.
Furthermore, here we have made one choice of parameters for the Ising-QCD mapping that
is motivated by utilizing the available universal inputs. However, this remains a choice which
also effects the size and shape of the fluctuations. In a forthcoming publication, we will
explore the effect of the parameters in detail.

3 Conclusions

Many open questions remain about the phase structure of QCD at finite temperatures and
densities which are outside the current range of first-principle approaches. I focused here
on the effects of a potential critical point on the equilibrium particle fluctuations. By utiliz-
ing universal properties of the equation of state, we have made estimates for the equilibrium



Figure 1. Fourth order proton fluctuations calculated as shown in Eq. 9 in the phase diagram (left) and
along freeze-out trajectories (right).

critical fluctuations of protons. Importantly, these equilibrium quantities are ready to in turn
be used as input for estimating out-of-equilibrium fluctuations in a similar manner as was
previously shown for Gaussian fluctuations in Ref. [31] such that they can more readily be
compared to experimental data. Furthermore, given these tools to make such estimates, once
the experimental data becomes available we will be able to constrain the non-universal fea-
tures of this approach in order to yield the proper mapping between the QCD phase diagram
and its analogous critical features from the 3D Ising model.
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