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Abstract. We present an alternative approach to deriving second-order non-
conformal hydrodynamics from the relativistic Boltzmann equation. We
demonstrate how constitutive relations for shear and bulk stresses can be trans-
formed into dynamical evolution equations, resulting in Israel-Stewart-like
(ISL) hydrodynamics. To understand the far-from-equilibrium applicability of
such ISL theories, we investigate the one-dimensional boost-invariant Boltz-
mann equation using special moments of the distribution function for a system
with finite particle mass. Our analysis reveals that the mathematical structure
of the ISL equations is akin to that of moment equations, enabling them to ap-
proximately replicate even the collisionless dynamics. We conclude that this
particular feature is important in extending the applicability of ISL theories be-
yond the hydrodynamic regime.

1 Hydrodynamics and Israel-Stewart theory
Kinetic theory provides a microscopic description capable of accurately describing a far-
from-equilibrium systems as well as the collective dynamics of a system close to equilib-
rium, and has been employed extensively to formulate the theory of relativistic dissipative
hydrodynamics [1]. The relativistic Boltzmann equation for a gas of massive particles in the
relaxation-time approximation is given by: pµ∂µ f = −

(u·p)
τR

(
f − feq

)
, where τR denotes the

relaxation time. By employing Chapman-Enskog-like expansion of f (x, p), we derive the
correction to the equilibrium distribution function up to second order in gradients as:

δ f =
τR

T (u · p)

[[
m2 − (1 − 3c2

s)(u · p)2
] θ

3
+ pµpνσµν

]
feq

− τRD
[

τR

T (u · p)

{[
m2−(1 − 3c2

s)(u · p)2
] θ

3
+pµpνσµν

}
feq

]
−
τR

u · p
pµ∇µ

[
τR

T

{
(u · p)c2

s θ+
pαpν

u · p
(∇νuα)

}
feq

]
+

τR

T (ε + P)

[
pµ(∇µΠ) − Π pµu̇µ + (u · p)c2

s Π θ − (u · p)c2
s π

µνσµν − pµ∆µα∂βπ
αβ

]
feq, (1)

where we have used the standard notations and definitions [2]. The out of equilibrium temper-
ature ‘T ’ and fluid velocity ‘uµ’ are defined using the Landau matching and frame conditions.
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Using the definitions of bulk and shear stresses,

Π ≡ −
1
3

∆αβ

∫
dP pαpβ δ f , πµν ≡ ∆

µν
αβ

∫
dP pαpβ δ f , (2)

the second-order constitutive relations using Eq. (1) are obtained to be:

Π

τR
= − βΠθ − D[−τRβΠθ] + c2

sΠθ − c2
sπ

µνσµν +
5
9
τR

T

[
3c2

s(I31 + I32) + (5I32 + 7I33)
]
θ2

+
4
3
τR

T
(2I32 + 7I33)σµνσµν , (3)

πµν

τR
= 2βπσµν − ∆

µν
αβD

[
2τRβπσ

αβ
]

+ 4τRβπσ
〈µ
ρ ω

ν〉ρ − 4
τR

T
(I32 + 2I33)σ〈µρ σν〉ρ

−
τR

T

[
2c2

s(I31 + I32) +
4
3

(5I32 + 7I33)
]
σµνθ . (4)

Equations (3) and (4) are exact up to second order, and along with energy-momentum conser-
vation equations describe the evolution of the hydrodynamic fields, i.e., temperature and fluid
velocity. These equations are the second-order hydrodynamic equations in the traditional
sense, where no new fields are introduced. The resulting equations are however acausal.

Phenomenological Israel-Stewart theory avoids the acausality issue by promoting the dis-
sipative stresses to dynamical degrees of freedom [3, 4]. Israel-Stewart-like (ISL) hydrody-
namic equations, commonly refereed to in the heavy-ion community as ‘second-order hydro-
dynamics’ and used in hydrodynamic simulation of heavy-ion collisions, can be obtained by
replacing the gradients θ and σµν in Eqs. (3) and (4) using the first order constitutive relations
for dissipative stresses, i.e., θ → − Π

τRβΠ
and σµν → πµν

2τRβπ
. The resulting equations are now

transformed into the dynamical evolution equations:

τRΠ̇ + Π = −ζθ − τRδΠΠΠθ + τRλΠππ
µνσµν, (5)

τRπ̇
〈µν〉 + πµν = 2ησµν + 2τRπ

〈µ
α ω

ν〉α − τRτπππ
〈µ
α σ

ν〉α − τR
Sπ

2βπ
πµνθ + τR

SΠ

βΠ

Πσµν. (6)

(See Ref. [2] for expressions of the transport coefficients.) The above equations are exact up to
second order and are not a priori expected to work in regimes of large gradients. Surprisingly,
comparison of such ISL equations with kinetic theory in flow profiles amenable to semi-
analytic treatment have shown that they provide a good approximation of the exact dynamics
even in far-off-equilibrium regimes [2, 5–8]. We shall further examine this in the next section.

It is important to note that the last two terms in Eq. (6) originate from the last term in
Eq. (4), and therefore must satisfy the constraint,

Sπ + SΠ =
1
T

[
2c2

s(I31 + I32) +
4
3

(5I32 + 7I33)
]
. (7)

The choice,

Sπ =
2

3T
(5I32 + 7I33), SΠ =

2
T

[
c2

s(I31 + I32) +
1
3

(5I32 + 7I33)
]
, (8)

respects condition (7) and provides the expressions for δππ =
Sπ
2βπ

and λπΠ = SΠ

βΠ
obtained in

prior works [2], making Eqs. (3) and (4) identical to those obtained in [2]. We emphasize
that there is no unique method to determine the coefficients Sπ and SΠ. Any combination
satisfying constraint (7) is a valid choice. Nevertheless, various combinations impact the
shear-bulk coupling and exert influence in the far-off-equilibrium regime. For instance, the
selection of these terms as proposed in Ref. [9] is better suited for Bjorken geometry.



2 Moments of Boltzmann equation

Simulations of ultra-relativistic collisions based on ISL theories have been successful in de-
scribing the final-state observables. However, hydrodynamics is expected to break down for
such systems as the evolution of the formed matter at early stages is affected by large spa-
tial and temporal gradients. To better understand this unexpected effectiveness, we consider
an idealization of the early stages of a high-energy heavy-ion collision, where the produced
matter undergoes a boost-invariant expansion along the z direction [10]. The kinetic equation
describing the evolution of the distribution function, in the relaxation-time approximation is
[11] (

∂

∂τ
−

pz

τ

∂

∂pz

)
f (τ, p) = −

f (τ, p) − feq(p0/T )
τR

, (9)

where τ is the proper time, and p0 =
√

m2 + p2 is the energy of a particle with mass m and
momentum p.

For a system undergoing Bjorken expansion, the components of energy-momentum tensor
(ε, PT and PL) can be defined in terms of the moments [12, 13]

Ln ≡

∫
dP p2

0 P2n(cosψ) f (τ, p) , (10)

where P2n is the Legendre polynomial and cosψ ≡ pz/p0. The first two Ln-moments are
L0 = ε and L1 = (3PL − ε) /2. The transverse pressure involves in addition the trace of
the energy-momentum tensor, PT = 1

3

(
L0 − L1 −

3
2 T µ

µ

)
, which cannot be expressed solely in

terms of the Ln-moments. This requires another type of moments, which we define as [9]

Mn ≡ m2
∫

dP P2n(cosψ) f (τ, p). (11)

The momentM0 is equal to the trace of the energy-momentum tensor T µ
µ . The bulk viscous

pressure (Π), and a single independent shear stress tensor component (φ) can be expressed in
terms of the moments and the equilibrium pressure (P),

P + Π =
1
3

(L0 −M0) , φ = −
2
3

(
L1 +

M0

2

)
. (12)

Using the relations among the Legendre polynomials and the definitions (10) and (11) of the
moments, the kinetic equation (9) can be recast into a hierarchy of coupled equations:

∂Ln

∂τ
= −

1
τ

(anLn + bnLn−1 + cnLn+1) −

(
Ln − L

eq
n

)
τR

(
1 − δn,0

)
, (13)

∂Mn

∂τ
= −

1
τ

(
a′nMn + b′nMn−1 + c′nMn+1

)
−

(
Mn −M

eq
n

)
τR

, (14)

where the coefficients an, bn, cn and a′n, b
′
n, c
′
n are real constants [9]. The equations for the low-

est three momentsL0, L1, andM0 fully represent the evolution of energy-momentum tensor.
The last terms (proportional to the collision rate 1/τR) in above equations arise from the RTA
collision kernel and capture the effect of the collisions. Without these terms, Eqs. (13, 14)
describe the free streaming (collisionless) regime, where the moments evolve as power laws.
The collision term in the above equations produces a damping of the moments and drives the
system towards local equilibrium.



The Ln moment equations are decoupled from theMn moment equations. To proceed, it
is instructive to write the L0 equation in terms of the variable g0 = τ

L0

∂L0
∂τ

,

− β(g0, w) = g2
0 + g0 [a0 + a1 + w] + a0a1 − c0b1 + a0w − c0c1

L2

L0
−

c0

2
w

(
1 − 3

P
ε

)
, (15)

where β(g0, w) = w dg0
dw and w ≡ τ/τR. Note that in writing the above equation, the time

derivative of L1 was crucial and it coupled the above equation to higher moments. In colli-
sionless regime, w � 1, the function β(g0, w) is dominated by the terms that do not depend on
w. The zeroes of this function correspond to two fixed points of the free-streaming evolution,
which have the exact values of g0 = −1,−2. A naive truncation where one simply ignores
the term proportional to L2 in Eq. (15), the fixed point values are respectively −0.93 and
−2.21, approximately capturing the location of these fixed points. The hydrodynamic fixed
point, g∗ = −a0 +

c0
2

(
1 − 3 P

ε

)
, is reached when the collision rate dominates the expansion,

i.e. w � 1, and its location is exactly captured even by this truncated equations. This implies
that even the naively truncated moment equations capture approximately the exact dynamics
even in collisionless regime (see [9, 14] for more details).

The equations for the moments, L1 and M0 can be reformulated in terms of equations
for shear and bulk pressures using relations (12). The ISL equations (3,4) corresponding to
Bjorken flow emerge naturally from the moment equations by truncating the moment hier-
archy, and they retain the approximate values of the previously mentioned fixed points [9].
The fact that Israel-Stewart equations apparently allow “hydrodynamics” to work in far-off-
equilibrium regimes has little to do with hydrodynamics, but rather with the fact that the
structure of Israel-Stewart equations is similar to that of the moment equations. Thus they are
able to approximately capture some of the features of the collisionless regime.
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